DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5533

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5533

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5533 (TID: 100168), and it has 120 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric56 unique values
0 missing
SpMaxA_AEA.dm.numeric55 unique values
0 missing
P_VSA_m_4numeric10 unique values
0 missing
P_VSA_s_5numeric8 unique values
0 missing
CATS2D_04_LLnumeric28 unique values
0 missing
nPyridinesnumeric2 unique values
0 missing
SM15_EA.ri.numeric108 unique values
0 missing
SM14_EA.ri.numeric109 unique values
0 missing
SM13_EA.ri.numeric108 unique values
0 missing
P_VSA_i_4numeric18 unique values
0 missing
CIC1numeric89 unique values
0 missing
SpMaxA_EA.bo.numeric62 unique values
0 missing
SM10_EA.ed.numeric103 unique values
0 missing
SM09_EA.ed.numeric101 unique values
0 missing
CATS2D_02_LLnumeric28 unique values
0 missing
CIC0numeric82 unique values
0 missing
SaaNnumeric35 unique values
0 missing
N.075numeric3 unique values
0 missing
NaaNnumeric3 unique values
0 missing
P_VSA_MR_7numeric17 unique values
0 missing
NdssCnumeric8 unique values
0 missing
SsCH3numeric96 unique values
0 missing
SIC1numeric78 unique values
0 missing
SpMaxA_EA.ed.numeric80 unique values
0 missing
SM05_EA.ed.numeric100 unique values
0 missing
P_VSA_e_3numeric14 unique values
0 missing
Eta_epsi_Anumeric68 unique values
0 missing
SM14_EA.bo.numeric103 unique values
0 missing
SdsCHnumeric72 unique values
0 missing
SM15_EAnumeric105 unique values
0 missing
SdssCnumeric76 unique values
0 missing
SpMax1_Bh.p.numeric67 unique values
0 missing
P_VSA_LogP_1numeric30 unique values
0 missing
C.016numeric5 unique values
0 missing
N.numeric28 unique values
0 missing
NssNHnumeric3 unique values
0 missing
SssNHnumeric40 unique values
0 missing
nSO2Nnumeric2 unique values
0 missing
nNnumeric5 unique values
0 missing
Eig01_EA.bo.numeric75 unique values
0 missing
SM11_AEA.ri.numeric75 unique values
0 missing
SpDiam_EA.bo.numeric76 unique values
0 missing
SpMax_EA.bo.numeric75 unique values
0 missing
CATS2D_06_LLnumeric26 unique values
0 missing
AACnumeric78 unique values
0 missing
BIC0numeric62 unique values
0 missing
IC0numeric78 unique values
0 missing
SIC0numeric67 unique values
0 missing
P_VSA_i_1numeric6 unique values
0 missing
molecule_id (row identifier)nominal120 unique values
0 missing
NdsCHnumeric5 unique values
0 missing
nR.Csnumeric5 unique values
0 missing
Eig01_AEA.dm.numeric56 unique values
0 missing
SpDiam_AEA.dm.numeric60 unique values
0 missing
SpMax_AEA.dm.numeric56 unique values
0 missing
SM09_EA.bo.numeric100 unique values
0 missing
SM10_EA.bo.numeric102 unique values
0 missing
SM11_EA.bo.numeric104 unique values
0 missing
SM12_EA.bo.numeric107 unique values
0 missing
SM13_EA.bo.numeric104 unique values
0 missing
nCconjnumeric8 unique values
0 missing
C.028numeric3 unique values
0 missing
N.070numeric2 unique values
0 missing
NaaaCnumeric2 unique values
0 missing
SaaaCnumeric34 unique values
0 missing

62 properties

120
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.46
Percentage of numeric attributes.
1.54
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.04
First quartile of kurtosis among attributes of the numeric type.
0.6
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.27
First quartile of skewness among attributes of the numeric type.
0.46
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.16
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.06
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.82
Second quartile (Median) of skewness among attributes of the numeric type.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.26
Third quartile of kurtosis among attributes of the numeric type.
15
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.15
Third quartile of skewness among attributes of the numeric type.
1.82
Third quartile of standard deviation of attributes of the numeric type.
0.51
Average class difference between consecutive instances.
7.42
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.54
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
13.63
Maximum kurtosis among attributes of the numeric type.
26.76
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.61
Maximum skewness among attributes of the numeric type.
25.39
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.96
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.84
Mean skewness among attributes of the numeric type.
3.15
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.37
Minimum kurtosis among attributes of the numeric type.
0.14
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.95
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task