DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293264

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293264

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1293264 (TID: 103697), and it has 1086 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric70 unique values
0 missing
MATS1pnumeric312 unique values
0 missing
ATSC6vnumeric1035 unique values
0 missing
ATS3enumeric700 unique values
0 missing
ON1Vnumeric847 unique values
0 missing
HVcpxnumeric645 unique values
0 missing
Xindexnumeric293 unique values
0 missing
SpMin7_Bh.m.numeric529 unique values
0 missing
ATSC7vnumeric1035 unique values
0 missing
ATS2inumeric671 unique values
0 missing
BIC3numeric217 unique values
0 missing
GATS1inumeric550 unique values
0 missing
SpMin4_Bh.s.numeric551 unique values
0 missing
SpMax3_Bh.v.numeric538 unique values
0 missing
ATSC8vnumeric1030 unique values
0 missing
SpMax8_Bh.e.numeric538 unique values
0 missing
ATSC3pnumeric1008 unique values
0 missing
SIC4numeric230 unique values
0 missing
Vindexnumeric231 unique values
0 missing
AECCnumeric726 unique values
0 missing
SAdonnumeric69 unique values
0 missing
IDEnumeric677 unique values
0 missing
SpMax3_Bh.e.numeric474 unique values
0 missing
NRSnumeric7 unique values
0 missing
SpMin8_Bh.i.numeric517 unique values
0 missing
ATS8pnumeric808 unique values
0 missing
SpMax3_Bh.i.numeric444 unique values
0 missing
SpMin3_Bh.m.numeric493 unique values
0 missing
SpMax8_Bh.i.numeric546 unique values
0 missing
Rperimnumeric29 unique values
0 missing
CIC2numeric714 unique values
0 missing
SpMin8_Bh.p.numeric553 unique values
0 missing
ATSC5pnumeric1035 unique values
0 missing
SpMax3_Bh.p.numeric549 unique values
0 missing
SpMin8_Bh.v.numeric544 unique values
0 missing
BIC4numeric201 unique values
0 missing
ATSC3mnumeric1054 unique values
0 missing
P_VSA_p_1numeric101 unique values
0 missing
ICRnumeric505 unique values
0 missing
nRCONR2numeric3 unique values
0 missing
DLS_04numeric9 unique values
0 missing
CIC3numeric608 unique values
0 missing
CIC5numeric556 unique values
0 missing
CIC4numeric574 unique values
0 missing
P_VSA_MR_1numeric84 unique values
0 missing
SpMax8_Bh.p.numeric554 unique values
0 missing
MATS1inumeric457 unique values
0 missing
DLS_consnumeric53 unique values
0 missing
SpMin7_Bh.s.numeric440 unique values
0 missing
nArCONR2numeric3 unique values
0 missing
NssCH2numeric18 unique values
0 missing
H.047numeric30 unique values
0 missing
NsssNnumeric5 unique values
0 missing
C.006numeric11 unique values
0 missing
DECCnumeric664 unique values
0 missing
P_VSA_LogP_7numeric144 unique values
0 missing
SIC5numeric221 unique values
0 missing
ATSC4mnumeric1066 unique values
0 missing
SpMin6_Bh.s.numeric500 unique values
0 missing
SpMin8_Bh.s.numeric371 unique values
0 missing
DLS_05numeric3 unique values
0 missing
SpMax8_Bh.v.numeric564 unique values
0 missing
ATSC4pnumeric1031 unique values
0 missing
molecule_id (row identifier)nominal1086 unique values
0 missing
SIC3numeric242 unique values
0 missing
Yindexnumeric488 unique values
0 missing
Hynumeric423 unique values
0 missing
P_VSA_s_2numeric77 unique values
0 missing
SpMin8_Bh.m.numeric568 unique values
0 missing
P_VSA_v_1numeric47 unique values
0 missing
P_VSA_m_1numeric47 unique values
0 missing
P_VSA_e_1numeric47 unique values
0 missing

62 properties

1086
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.61
Percentage of numeric attributes.
1.39
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.71
First quartile of kurtosis among attributes of the numeric type.
0.67
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.99
First quartile of skewness among attributes of the numeric type.
0.21
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
2.34
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.49
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.34
Second quartile (Median) of skewness among attributes of the numeric type.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
4.2
Third quartile of kurtosis among attributes of the numeric type.
8.4
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.06
Third quartile of skewness among attributes of the numeric type.
3.14
Third quartile of standard deviation of attributes of the numeric type.
0.79
Average class difference between consecutive instances.
22.64
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.07
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
48.27
Maximum kurtosis among attributes of the numeric type.
198.09
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.33
Maximum skewness among attributes of the numeric type.
81.11
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
4.04
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.2
Mean skewness among attributes of the numeric type.
9.28
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.16
Minimum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.56
Minimum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task