DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4121

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4121

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4121 (TID: 10396), and it has 662 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric40 unique values
0 missing
ATS6pnumeric517 unique values
0 missing
ATS3vnumeric476 unique values
0 missing
ATS6mnumeric506 unique values
0 missing
ATS6inumeric531 unique values
0 missing
ATS6enumeric526 unique values
0 missing
ATS5vnumeric514 unique values
0 missing
ATS5snumeric519 unique values
0 missing
ATS5pnumeric515 unique values
0 missing
ATS5mnumeric510 unique values
0 missing
ATS5inumeric516 unique values
0 missing
ATS5enumeric516 unique values
0 missing
ATS4vnumeric493 unique values
0 missing
ATS4snumeric499 unique values
0 missing
ATS4pnumeric507 unique values
0 missing
ATS4mnumeric508 unique values
0 missing
ATS4inumeric503 unique values
0 missing
ATS4enumeric507 unique values
0 missing
ATS3snumeric484 unique values
0 missing
ATS8enumeric554 unique values
0 missing
ATSC1mnumeric608 unique values
0 missing
ATSC1inumeric412 unique values
0 missing
ATSC1enumeric211 unique values
0 missing
ATS8vnumeric542 unique values
0 missing
ATS8snumeric545 unique values
0 missing
ATS8pnumeric559 unique values
0 missing
ATS8mnumeric535 unique values
0 missing
ATS8inumeric567 unique values
0 missing
ATS6snumeric515 unique values
0 missing
ATS7vnumeric535 unique values
0 missing
ATS7snumeric540 unique values
0 missing
ATS7pnumeric541 unique values
0 missing
ATS7mnumeric537 unique values
0 missing
ATS7inumeric550 unique values
0 missing
ATS7enumeric536 unique values
0 missing
ATS6vnumeric520 unique values
0 missing
P_VSA_e_3numeric257 unique values
0 missing
AMWnumeric517 unique values
0 missing
AMRnumeric633 unique values
0 missing
ALOGP2numeric630 unique values
0 missing
ALOGPnumeric593 unique values
0 missing
AECCnumeric498 unique values
0 missing
AACnumeric369 unique values
0 missing
Eig03_AEA.ed.numeric446 unique values
0 missing
nPyrazinesnumeric2 unique values
0 missing
ARRnumeric184 unique values
0 missing
ATSC4pnumeric639 unique values
0 missing
P_VSA_i_3numeric388 unique values
0 missing
PHInumeric572 unique values
0 missing
Chi1_EA.dm.numeric585 unique values
0 missing
MATS1vnumeric165 unique values
0 missing
ATSC3mnumeric641 unique values
0 missing
Chi0_EA.dm.numeric575 unique values
0 missing
nPyrrolesnumeric3 unique values
0 missing
ATS2inumeric468 unique values
0 missing
ATS3pnumeric467 unique values
0 missing
ATS3mnumeric465 unique values
0 missing
ATS3inumeric483 unique values
0 missing
ATS3enumeric474 unique values
0 missing
ATS2vnumeric447 unique values
0 missing
ATS2snumeric499 unique values
0 missing
ATS2pnumeric459 unique values
0 missing
ATS2mnumeric455 unique values
0 missing
molecule_id (row identifier)nominal662 unique values
0 missing
ATS2enumeric466 unique values
0 missing
ATS1vnumeric435 unique values
0 missing
ATS1snumeric458 unique values
0 missing
ATS1pnumeric435 unique values
0 missing
ATS1mnumeric439 unique values
0 missing
ATS1inumeric446 unique values
0 missing
ATS1enumeric452 unique values
0 missing

62 properties

662
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.17
First quartile of kurtosis among attributes of the numeric type.
3.71
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.96
First quartile of skewness among attributes of the numeric type.
0.28
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.83
Second quartile (Median) of kurtosis among attributes of the numeric type.
4.38
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.26
Second quartile (Median) of skewness among attributes of the numeric type.
0.38
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
5.99
Third quartile of kurtosis among attributes of the numeric type.
5.63
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.25
Third quartile of skewness among attributes of the numeric type.
0.61
Third quartile of standard deviation of attributes of the numeric type.
0.74
Average class difference between consecutive instances.
10.95
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.11
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
20.53
Maximum kurtosis among attributes of the numeric type.
242.45
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.64
Maximum skewness among attributes of the numeric type.
85.48
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
3.17
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.24
Mean skewness among attributes of the numeric type.
3.01
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.26
Minimum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.83
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task