DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5251

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5251

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5251 (TID: 100097), and it has 894 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric147 unique values
0 missing
SpMin8_Bh.p.numeric479 unique values
0 missing
Chi0_AEA.ed.numeric621 unique values
0 missing
SM09_AEA.dm.numeric546 unique values
0 missing
Eig15_EAnumeric546 unique values
0 missing
CIDnumeric468 unique values
0 missing
Eig07_AEA.ri.numeric620 unique values
0 missing
SpMin8_Bh.v.numeric462 unique values
0 missing
Xunumeric792 unique values
0 missing
Senumeric769 unique values
0 missing
Eig14_AEA.bo.numeric561 unique values
0 missing
SpMin7_Bh.p.numeric476 unique values
0 missing
TIC1numeric817 unique values
0 missing
ON1numeric273 unique values
0 missing
VARnumeric240 unique values
0 missing
Eig07_EA.ri.numeric619 unique values
0 missing
Chi0_EAnumeric621 unique values
0 missing
Chi0_AEA.ri.numeric621 unique values
0 missing
Chi0_AEA.dm.numeric621 unique values
0 missing
SpMax7_Bh.v.numeric490 unique values
0 missing
SpAD_EAnumeric795 unique values
0 missing
Sinumeric789 unique values
0 missing
ATS5inumeric651 unique values
0 missing
Psi_i_1numeric828 unique values
0 missing
Eig08_AEA.bo.numeric539 unique values
0 missing
ATSC4pnumeric851 unique values
0 missing
Psi_e_0numeric798 unique values
0 missing
ATS2inumeric601 unique values
0 missing
ATS4pnumeric640 unique values
0 missing
X0numeric393 unique values
0 missing
ATSC5pnumeric853 unique values
0 missing
Eig15_EA.bo.numeric622 unique values
0 missing
Chi1_EA.ed.numeric738 unique values
0 missing
ATS3vnumeric593 unique values
0 missing
TIC2numeric810 unique values
0 missing
ATS1vnumeric559 unique values
0 missing
SpMin7_Bh.v.numeric480 unique values
0 missing
Psi_i_0numeric813 unique values
0 missing
Svnumeric795 unique values
0 missing
ATS1inumeric578 unique values
0 missing
TIC5numeric672 unique values
0 missing
SpMin7_Bh.e.numeric466 unique values
0 missing
X1solnumeric708 unique values
0 missing
Eta_betaSnumeric100 unique values
0 missing
TIC4numeric687 unique values
0 missing
TIC3numeric717 unique values
0 missing
MDDDnumeric790 unique values
0 missing
Vxnumeric752 unique values
0 missing
VvdwMGnumeric752 unique values
0 missing
Chi0_EA.dm.numeric778 unique values
0 missing
Eta_alphanumeric563 unique values
0 missing
AMRnumeric843 unique values
0 missing
XMODnumeric843 unique values
0 missing
SpMax8_Bh.m.numeric518 unique values
0 missing
Chi0_EA.ri.numeric839 unique values
0 missing
Chi0_AEA.bo.numeric621 unique values
0 missing
Eig10_AEA.dm.numeric584 unique values
0 missing
X1numeric648 unique values
0 missing
SpMin7_Bh.i.numeric450 unique values
0 missing
Eig15_AEA.bo.numeric566 unique values
0 missing
SpMax7_Bh.i.numeric469 unique values
0 missing
Chi0_EA.ed.numeric765 unique values
0 missing
ATS5enumeric652 unique values
0 missing
molecule_id (row identifier)nominal894 unique values
0 missing
ATS1enumeric568 unique values
0 missing
SM10_AEA.ri.numeric640 unique values
0 missing
Eig15_EA.ed.numeric640 unique values
0 missing
nBTnumeric74 unique values
0 missing
Spnumeric756 unique values
0 missing
Chi1_EA.ri.numeric852 unique values
0 missing
SpMax7_Bh.e.numeric483 unique values
0 missing

62 properties

894
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.09
First quartile of kurtosis among attributes of the numeric type.
2.8
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.44
First quartile of skewness among attributes of the numeric type.
0.4
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.02
Second quartile (Median) of kurtosis among attributes of the numeric type.
10.06
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.3
Second quartile (Median) of skewness among attributes of the numeric type.
2.99
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.31
Third quartile of kurtosis among attributes of the numeric type.
27.53
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.35
Third quartile of skewness among attributes of the numeric type.
8.3
Third quartile of standard deviation of attributes of the numeric type.
0.32
Average class difference between consecutive instances.
40.75
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.08
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
8.55
Maximum kurtosis among attributes of the numeric type.
474.78
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.58
Maximum skewness among attributes of the numeric type.
118.93
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.97
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.11
Mean skewness among attributes of the numeric type.
12.25
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.79
Minimum kurtosis among attributes of the numeric type.
-0.61
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.93
Minimum skewness among attributes of the numeric type.
0.25
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task