DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4729

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4729

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4729 (TID: 20085), and it has 155 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric88 unique values
0 missing
AACnumeric115 unique values
0 missing
SM15_EA.bo.numeric113 unique values
0 missing
SpMax_EA.dm.numeric40 unique values
0 missing
SM15_EA.dm.numeric31 unique values
0 missing
SM14_EA.dm.numeric56 unique values
0 missing
SM13_EA.dm.numeric31 unique values
0 missing
SM12_EA.dm.numeric56 unique values
0 missing
SM11_EA.dm.numeric32 unique values
0 missing
SM10_EA.dm.numeric59 unique values
0 missing
SM09_EA.dm.numeric32 unique values
0 missing
SM08_EA.dm.numeric63 unique values
0 missing
SM07_EA.dm.numeric32 unique values
0 missing
SM06_EA.dm.numeric63 unique values
0 missing
Eig01_EA.dm.numeric40 unique values
0 missing
O.059numeric3 unique values
0 missing
nRORnumeric3 unique values
0 missing
SM05_EA.dm.numeric31 unique values
0 missing
AECCnumeric112 unique values
0 missing
ALOGPnumeric139 unique values
0 missing
ALOGP2numeric139 unique values
0 missing
AMRnumeric140 unique values
0 missing
AMWnumeric123 unique values
0 missing
ARRnumeric72 unique values
0 missing
ATS1enumeric128 unique values
0 missing
ATS1inumeric130 unique values
0 missing
ATS1mnumeric129 unique values
0 missing
ATS1pnumeric128 unique values
0 missing
ATS1snumeric135 unique values
0 missing
ATS1vnumeric132 unique values
0 missing
ATS2enumeric128 unique values
0 missing
ATS2inumeric131 unique values
0 missing
ATS2mnumeric128 unique values
0 missing
ATS2pnumeric130 unique values
0 missing
SM10_AEA.bo.numeric100 unique values
0 missing
SssssCnumeric19 unique values
0 missing
SpMax1_Bh.s.numeric68 unique values
0 missing
SM03_EA.dm.numeric24 unique values
0 missing
MAXDNnumeric144 unique values
0 missing
MATS2snumeric125 unique values
0 missing
GATS2snumeric134 unique values
0 missing
GATS2enumeric129 unique values
0 missing
CATS2D_01_DAnumeric3 unique values
0 missing
SpMin2_Bh.m.numeric106 unique values
0 missing
Eig02_EAnumeric100 unique values
0 missing
CATS2D_01_AAnumeric2 unique values
0 missing
SpMax2_Bh.i.numeric116 unique values
0 missing
SM11_AEA.dm.numeric108 unique values
0 missing
Eig02_EA.ed.numeric108 unique values
0 missing
nRCONR2numeric3 unique values
0 missing
Eig02_AEA.ed.numeric102 unique values
0 missing
ATSC2snumeric151 unique values
0 missing
C.031numeric3 unique values
0 missing
SpMax_EA.bo.numeric86 unique values
0 missing
SpDiam_EA.bo.numeric86 unique values
0 missing
SM11_AEA.ri.numeric86 unique values
0 missing
Eig01_EA.bo.numeric86 unique values
0 missing
SpMin3_Bh.s.numeric132 unique values
0 missing
X.numeric19 unique values
0 missing
MATS2enumeric118 unique values
0 missing
molecule_id (row identifier)nominal155 unique values
0 missing
ATSC2enumeric121 unique values
0 missing
C.018numeric2 unique values
0 missing
ATS4pnumeric143 unique values
0 missing
SpMax2_Bh.m.numeric118 unique values
0 missing
Eig02_AEA.ri.numeric126 unique values
0 missing
X5Avnumeric31 unique values
0 missing
SpMax2_Bh.e.numeric118 unique values
0 missing

62 properties

155
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.02
First quartile of kurtosis among attributes of the numeric type.
0.93
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.13
First quartile of skewness among attributes of the numeric type.
0.28
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.9
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.32
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.53
Second quartile (Median) of skewness among attributes of the numeric type.
0.39
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
3.36
Third quartile of kurtosis among attributes of the numeric type.
4.33
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.07
Third quartile of skewness among attributes of the numeric type.
1.6
Third quartile of standard deviation of attributes of the numeric type.
0.52
Average class difference between consecutive instances.
5.02
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.44
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
18.98
Maximum kurtosis among attributes of the numeric type.
87.22
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.42
Maximum skewness among attributes of the numeric type.
36
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.98
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.86
Mean skewness among attributes of the numeric type.
2.44
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.66
Minimum kurtosis among attributes of the numeric type.
-0.29
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.66
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task