DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3820

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3820

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3820 (TID: 20095), and it has 452 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric252 unique values
0 missing
IDMTnumeric327 unique values
0 missing
Eig03_EAnumeric203 unique values
0 missing
Eig08_AEA.ed.numeric250 unique values
0 missing
Chi1_EA.ed.numeric315 unique values
0 missing
SpAD_AEA.dm.numeric398 unique values
0 missing
SMTIVnumeric416 unique values
0 missing
TIC3numeric328 unique values
0 missing
SM02_AEA.bo.numeric182 unique values
0 missing
X0vnumeric362 unique values
0 missing
LOCnumeric191 unique values
0 missing
TIC1numeric358 unique values
0 missing
SpMax7_Bh.i.numeric226 unique values
0 missing
CENTnumeric296 unique values
0 missing
ON0Vnumeric267 unique values
0 missing
AMRnumeric381 unique values
0 missing
SM11_AEA.bo.numeric203 unique values
0 missing
Chi1_EAnumeric292 unique values
0 missing
Xunumeric320 unique values
0 missing
SpAD_AEA.bo.numeric349 unique values
0 missing
MPC01numeric28 unique values
0 missing
MWC01numeric28 unique values
0 missing
nBOnumeric28 unique values
0 missing
SRW02numeric28 unique values
0 missing
IDETnumeric324 unique values
0 missing
Eig07_AEA.ed.numeric255 unique values
0 missing
MWnumeric335 unique values
0 missing
piPC01numeric59 unique values
0 missing
SCBOnumeric59 unique values
0 missing
GMTInumeric321 unique values
0 missing
S0Knumeric138 unique values
0 missing
JGTnumeric166 unique values
0 missing
DLS_03numeric3 unique values
0 missing
Chi0_EA.ed.numeric314 unique values
0 missing
ATSC8enumeric348 unique values
0 missing
RDCHInumeric290 unique values
0 missing
MATS8pnumeric235 unique values
0 missing
SM05_EA.bo.numeric278 unique values
0 missing
SM12_AEA.dm.numeric265 unique values
0 missing
Eig03_EA.ed.numeric265 unique values
0 missing
SpMaxA_EA.ri.numeric58 unique values
0 missing
S1Knumeric299 unique values
0 missing
Eta_alphanumeric241 unique values
0 missing
MATS8vnumeric232 unique values
0 missing
MAXDPnumeric356 unique values
0 missing
SAtotnumeric368 unique values
0 missing
Eig11_AEA.dm.numeric243 unique values
0 missing
GGI1numeric20 unique values
0 missing
DBInumeric42 unique values
0 missing
PHInumeric335 unique values
0 missing
RBNnumeric11 unique values
0 missing
MSDnumeric301 unique values
0 missing
Chi1_AEA.ri.numeric292 unique values
0 missing
Chi1_AEA.ed.numeric292 unique values
0 missing
Chi1_AEA.dm.numeric292 unique values
0 missing
Chi1_AEA.bo.numeric292 unique values
0 missing
S2Knumeric330 unique values
0 missing
SssOnumeric272 unique values
0 missing
MDDDnumeric320 unique values
0 missing
TIC2numeric366 unique values
0 missing
molecule_id (row identifier)nominal452 unique values
0 missing
SpMax8_Bh.e.numeric230 unique values
0 missing
X1numeric267 unique values
0 missing
SMTInumeric325 unique values
0 missing
Chi1_EA.ri.numeric408 unique values
0 missing
Chi0_EA.ri.numeric394 unique values
0 missing
S3Knumeric362 unique values
0 missing
SpAD_EA.bo.numeric351 unique values
0 missing

62 properties

452
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.53
Percentage of numeric attributes.
1.47
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.43
First quartile of kurtosis among attributes of the numeric type.
4.12
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.46
First quartile of skewness among attributes of the numeric type.
0.34
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.05
Second quartile (Median) of kurtosis among attributes of the numeric type.
9.28
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.31
Second quartile (Median) of skewness among attributes of the numeric type.
1.79
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.16
Third quartile of kurtosis among attributes of the numeric type.
43.89
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.04
Third quartile of skewness among attributes of the numeric type.
7.39
Third quartile of standard deviation of attributes of the numeric type.
0.28
Average class difference between consecutive instances.
1146.49
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.15
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
17.42
Maximum kurtosis among attributes of the numeric type.
24557.05
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.02
Maximum skewness among attributes of the numeric type.
10709.76
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.72
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.26
Mean skewness among attributes of the numeric type.
450.52
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.88
Minimum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-3.5
Minimum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task