DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1940

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1940

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1940 (TID: 169), and it has 104 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric68 unique values
0 missing
IDEnumeric79 unique values
0 missing
C.019numeric3 unique values
0 missing
HVcpxnumeric82 unique values
0 missing
SM04_EA.dm.numeric46 unique values
0 missing
SM02_EA.dm.numeric46 unique values
0 missing
SsOHnumeric41 unique values
0 missing
MCDnumeric53 unique values
0 missing
nCrsnumeric8 unique values
0 missing
LOCnumeric64 unique values
0 missing
SM12_AEA.ri.numeric66 unique values
0 missing
Eig02_EA.bo.numeric66 unique values
0 missing
nCpnumeric7 unique values
0 missing
Xindexnumeric75 unique values
0 missing
N.074numeric3 unique values
0 missing
MATS2pnumeric81 unique values
0 missing
MATS5inumeric85 unique values
0 missing
ATS6mnumeric94 unique values
0 missing
NdssCnumeric7 unique values
0 missing
nCONNnumeric2 unique values
0 missing
nR.Csnumeric3 unique values
0 missing
C.041numeric2 unique values
0 missing
CATS2D_05_DLnumeric7 unique values
0 missing
MATS2mnumeric74 unique values
0 missing
ATS5mnumeric93 unique values
0 missing
SM06_EA.dm.numeric41 unique values
0 missing
SM08_EA.dm.numeric40 unique values
0 missing
SM10_EA.dm.numeric37 unique values
0 missing
SM12_EA.dm.numeric32 unique values
0 missing
SM14_EA.dm.numeric33 unique values
0 missing
SpAD_EA.dm.numeric46 unique values
0 missing
SpDiam_EA.dm.numeric26 unique values
0 missing
ICRnumeric75 unique values
0 missing
P_VSA_LogP_1numeric35 unique values
0 missing
MATS2vnumeric80 unique values
0 missing
SsCH3numeric75 unique values
0 missing
NsCH3numeric8 unique values
0 missing
GATS5inumeric87 unique values
0 missing
MATS3vnumeric84 unique values
0 missing
CATS2D_06_ALnumeric21 unique values
0 missing
Eta_betaS_Anumeric42 unique values
0 missing
H.051numeric9 unique values
0 missing
N.072numeric4 unique values
0 missing
GATS5pnumeric88 unique values
0 missing
GNarnumeric61 unique values
0 missing
DECCnumeric77 unique values
0 missing
MATS3pnumeric82 unique values
0 missing
Eta_sh_pnumeric68 unique values
0 missing
molecule_id (row identifier)nominal104 unique values
0 missing
GATS3vnumeric83 unique values
0 missing
P_VSA_LogP_2numeric29 unique values
0 missing
SpMAD_AEA.ed.numeric70 unique values
0 missing
C.001numeric7 unique values
0 missing
HNarnumeric57 unique values
0 missing
PDInumeric56 unique values
0 missing
NsssNnumeric4 unique values
0 missing
SsssNnumeric42 unique values
0 missing
Vindexnumeric75 unique values
0 missing
X0Anumeric46 unique values
0 missing
Yindexnumeric82 unique values
0 missing
BACnumeric37 unique values
0 missing
CATS2D_06_DAnumeric5 unique values
0 missing
P_VSA_MR_3numeric6 unique values
0 missing
X1Anumeric35 unique values
0 missing

62 properties

104
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.44
Percentage of numeric attributes.
1.56
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.35
First quartile of kurtosis among attributes of the numeric type.
0.63
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.04
First quartile of skewness among attributes of the numeric type.
0.13
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.98
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.88
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.24
Second quartile (Median) of skewness among attributes of the numeric type.
0.5
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0.62
Third quartile of kurtosis among attributes of the numeric type.
4.21
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.57
Third quartile of skewness among attributes of the numeric type.
2.01
Third quartile of standard deviation of attributes of the numeric type.
0.15
Average class difference between consecutive instances.
4.19
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.62
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
3.4
Maximum kurtosis among attributes of the numeric type.
43.96
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.41
Maximum skewness among attributes of the numeric type.
34.58
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.72
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.28
Mean skewness among attributes of the numeric type.
2.6
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-2.04
Minimum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.76
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task