DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2802

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2802

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2802 (TID: 10739), and it has 240 rows and 61 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

63 features

pXC50 (target)numeric105 unique values
0 missing
SaaNnumeric30 unique values
0 missing
SsOHnumeric188 unique values
0 missing
Eig03_AEA.dm.numeric66 unique values
0 missing
GATS2snumeric134 unique values
0 missing
SM12_AEA.ri.numeric44 unique values
0 missing
Eig02_EA.bo.numeric44 unique values
0 missing
GATS2enumeric94 unique values
0 missing
N.numeric48 unique values
0 missing
CATS2D_06_DLnumeric9 unique values
0 missing
MATS7vnumeric142 unique values
0 missing
CATS2D_09_DAnumeric7 unique values
0 missing
SpMax8_Bh.m.numeric131 unique values
0 missing
SM11_AEA.dm.numeric136 unique values
0 missing
Eig02_EA.ed.numeric136 unique values
0 missing
Eig02_AEA.bo.numeric74 unique values
0 missing
SpMAD_AEA.bo.numeric76 unique values
0 missing
SsSHnumeric23 unique values
0 missing
Eig02_AEA.ed.numeric114 unique values
0 missing
Eig02_EA.dm.numeric17 unique values
0 missing
SaaSnumeric25 unique values
0 missing
Eig02_EA.ri.numeric123 unique values
0 missing
Eig02_AEA.ri.numeric129 unique values
0 missing
Eig03_EA.ed.numeric131 unique values
0 missing
SM12_AEA.dm.numeric131 unique values
0 missing
MATS7enumeric174 unique values
0 missing
CATS2D_09_ANnumeric5 unique values
0 missing
CATS2D_08_ANnumeric4 unique values
0 missing
Eig09_AEA.ed.numeric105 unique values
0 missing
Hynumeric80 unique values
0 missing
Eta_F_Anumeric169 unique values
0 missing
ATS7snumeric205 unique values
0 missing
CATS2D_07_NLnumeric5 unique values
0 missing
CATS2D_01_DDnumeric2 unique values
0 missing
nRNHOnumeric2 unique values
0 missing
CATS2D_05_NLnumeric6 unique values
0 missing
CATS2D_06_NLnumeric6 unique values
0 missing
nRCOOHnumeric2 unique values
0 missing
CATS2D_04_NLnumeric4 unique values
0 missing
CATS2D_02_ANnumeric2 unique values
0 missing
CATS2D_01_ANnumeric4 unique values
0 missing
CATS2D_01_DNnumeric4 unique values
0 missing
CATS2D_02_NLnumeric4 unique values
0 missing
P_VSA_LogP_3numeric38 unique values
0 missing
O.057numeric3 unique values
0 missing
O.056numeric3 unique values
0 missing
CATS2D_04_DAnumeric5 unique values
0 missing
CATS2D_04_ANnumeric4 unique values
0 missing
molecule_id (row identifier)nominal240 unique values
0 missing
CATS2D_08_DAnumeric9 unique values
0 missing
SpMAD_AEA.dm.numeric112 unique values
0 missing
MATS5snumeric178 unique values
0 missing
CATS2D_08_DLnumeric10 unique values
0 missing
CATS2D_07_DAnumeric6 unique values
0 missing
Eig02_AEA.dm.numeric45 unique values
0 missing
MATS2snumeric134 unique values
0 missing
CATS2D_03_DAnumeric8 unique values
0 missing
P_VSA_LogP_4numeric30 unique values
0 missing
CATS2D_07_DLnumeric9 unique values
0 missing
CATS2D_07_AAnumeric10 unique values
0 missing
MATS7snumeric170 unique values
0 missing
CATS2D_06_DAnumeric7 unique values
0 missing
Eig03_AEA.ed.numeric105 unique values
0 missing

62 properties

240
Number of instances (rows) of the dataset.
63
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
62
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.41
Percentage of numeric attributes.
1.59
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.49
First quartile of kurtosis among attributes of the numeric type.
0.51
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.36
First quartile of skewness among attributes of the numeric type.
0.2
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.68
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.57
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.89
Second quartile (Median) of skewness among attributes of the numeric type.
0.57
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
5.35
Third quartile of kurtosis among attributes of the numeric type.
4.02
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.04
Third quartile of skewness among attributes of the numeric type.
1.35
Third quartile of standard deviation of attributes of the numeric type.
0.03
Average class difference between consecutive instances.
5.87
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.26
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
30.66
Maximum kurtosis among attributes of the numeric type.
108.91
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.66
Maximum skewness among attributes of the numeric type.
37.62
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
3.78
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
1.27
Mean skewness among attributes of the numeric type.
1.83
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.92
Minimum kurtosis among attributes of the numeric type.
-0.07
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.98
Minimum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task