DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3998

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3998

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3998 (TID: 11426), and it has 307 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric196 unique values
0 missing
X1MulPernumeric258 unique values
0 missing
SM06_AEA.dm.numeric171 unique values
0 missing
Eig14_AEA.ed.numeric176 unique values
0 missing
SpMin7_Bh.e.numeric174 unique values
0 missing
Eig11_AEA.ed.numeric164 unique values
0 missing
SpMin7_Bh.p.numeric179 unique values
0 missing
Eig15_AEA.ri.numeric223 unique values
0 missing
Eig13_AEA.ri.numeric245 unique values
0 missing
SpMax6_Bh.v.numeric178 unique values
0 missing
SpMax7_Bh.e.numeric195 unique values
0 missing
Yindexnumeric198 unique values
0 missing
SpMin5_Bh.s.numeric157 unique values
0 missing
SM07_AEA.ri.numeric208 unique values
0 missing
Eig12_EA.ri.numeric230 unique values
0 missing
Eig12_EA.ed.numeric208 unique values
0 missing
Eig14_AEA.ri.numeric232 unique values
0 missing
Eig12_EA.bo.numeric201 unique values
0 missing
SpMax8_Bh.p.numeric181 unique values
0 missing
Eig12_AEA.bo.numeric191 unique values
0 missing
SpMax7_Bh.i.numeric178 unique values
0 missing
X1solnumeric228 unique values
0 missing
Chi0_EA.ri.numeric267 unique values
0 missing
GMTInumeric227 unique values
0 missing
Eig14_EA.ri.numeric247 unique values
0 missing
CATS2D_07_ALnumeric9 unique values
0 missing
SpMin6_Bh.e.numeric162 unique values
0 missing
Chi1_EA.ed.numeric222 unique values
0 missing
ATS1pnumeric214 unique values
0 missing
X1Pernumeric255 unique values
0 missing
ATS1vnumeric229 unique values
0 missing
SpMax7_Bh.p.numeric174 unique values
0 missing
SpMax3_Bh.i.numeric158 unique values
0 missing
X1Kupnumeric279 unique values
0 missing
SM06_AEA.ri.numeric177 unique values
0 missing
TIC5numeric203 unique values
0 missing
TIC4numeric212 unique values
0 missing
SpMin5_Bh.i.numeric182 unique values
0 missing
ATSC5mnumeric290 unique values
0 missing
Eig13_AEA.ed.numeric184 unique values
0 missing
SpMax6_Bh.p.numeric179 unique values
0 missing
TIC3numeric223 unique values
0 missing
Psi_i_1numeric277 unique values
0 missing
Eig14_AEA.bo.numeric222 unique values
0 missing
Eig11_EA.ed.numeric177 unique values
0 missing
ATSC5pnumeric286 unique values
0 missing
SM05_AEA.dm.numeric165 unique values
0 missing
Eig11_EAnumeric165 unique values
0 missing
Eig11_EA.ri.numeric213 unique values
0 missing
Eig11_AEA.ri.numeric208 unique values
0 missing
GGI7numeric149 unique values
0 missing
molecule_id (row identifier)nominal307 unique values
0 missing
SpMin7_Bh.i.numeric174 unique values
0 missing
SpMax8_Bh.v.numeric177 unique values
0 missing
Eig12_AEA.ed.numeric179 unique values
0 missing
SNarnumeric100 unique values
0 missing
Xtnumeric85 unique values
0 missing
Eig12_AEA.ri.numeric242 unique values
0 missing
Chi1_AEA.bo.numeric209 unique values
0 missing
Chi1_AEA.dm.numeric209 unique values
0 missing
Chi1_AEA.ed.numeric209 unique values
0 missing
Chi1_AEA.ri.numeric209 unique values
0 missing
Chi1_EAnumeric209 unique values
0 missing
X1vnumeric279 unique values
0 missing
RDCHInumeric222 unique values
0 missing
SpMin6_Bh.i.numeric178 unique values
0 missing
Eig12_EAnumeric171 unique values
0 missing

62 properties

307
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.95
First quartile of kurtosis among attributes of the numeric type.
0.44
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.53
First quartile of skewness among attributes of the numeric type.
0.24
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.42
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.52
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.11
Second quartile (Median) of skewness among attributes of the numeric type.
0.78
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.8
Third quartile of kurtosis among attributes of the numeric type.
8.2
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.11
Third quartile of skewness among attributes of the numeric type.
1.93
Third quartile of standard deviation of attributes of the numeric type.
-0.11
Average class difference between consecutive instances.
108.58
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.22
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
5.5
Maximum kurtosis among attributes of the numeric type.
6249.56
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.78
Maximum skewness among attributes of the numeric type.
4317.93
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.4
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.28
Mean skewness among attributes of the numeric type.
69.18
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.17
Minimum kurtosis among attributes of the numeric type.
-0.66
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.95
Minimum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task