DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2069

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2069

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2069 (TID: 246), and it has 1135 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric582 unique values
0 missing
SpMax3_Bh.v.numeric310 unique values
0 missing
SssCH2numeric923 unique values
0 missing
ZM1Madnumeric828 unique values
0 missing
GGI4numeric461 unique values
0 missing
ZM2numeric155 unique values
0 missing
MWC03numeric155 unique values
0 missing
SpMax6_Bh.e.numeric467 unique values
0 missing
CATS2D_08_DLnumeric10 unique values
0 missing
ATS8inumeric663 unique values
0 missing
CATS2D_08_ALnumeric18 unique values
0 missing
CATS2D_07_NLnumeric7 unique values
0 missing
ZM1MulPernumeric960 unique values
0 missing
nCsp3numeric23 unique values
0 missing
SpMax_AEA.ri.numeric335 unique values
0 missing
Eig01_AEA.ri.numeric335 unique values
0 missing
Eta_Fnumeric1020 unique values
0 missing
Eig04_EA.ri.numeric437 unique values
0 missing
NssCH2numeric18 unique values
0 missing
ZM1Kupnumeric838 unique values
0 missing
SM02_EAnumeric53 unique values
0 missing
MPC02numeric53 unique values
0 missing
BBInumeric53 unique values
0 missing
Eta_betanumeric156 unique values
0 missing
piPC04numeric555 unique values
0 missing
CATS2D_02_LLnumeric37 unique values
0 missing
CATS2D_05_LLnumeric34 unique values
0 missing
SpAD_EA.ed.numeric725 unique values
0 missing
CATS2D_07_ALnumeric20 unique values
0 missing
D.Dtr05numeric514 unique values
0 missing
SRW04numeric108 unique values
0 missing
SpMax_EA.ed.numeric332 unique values
0 missing
SM10_AEA.dm.numeric332 unique values
0 missing
Eig01_EA.ed.numeric332 unique values
0 missing
ZM1Vnumeric205 unique values
0 missing
X4Anumeric47 unique values
0 missing
Chi1_EA.ed.numeric646 unique values
0 missing
SM13_AEA.ri.numeric422 unique values
0 missing
Eig03_EA.bo.numeric422 unique values
0 missing
ZM2Pernumeric968 unique values
0 missing
Eig06_EA.bo.numeric460 unique values
0 missing
X3Anumeric55 unique values
0 missing
SM05_AEA.bo.numeric499 unique values
0 missing
ATS7mnumeric645 unique values
0 missing
ZM2MulPernumeric970 unique values
0 missing
SM04_EA.bo.numeric528 unique values
0 missing
SM07_AEA.bo.numeric568 unique values
0 missing
SM06_AEA.bo.numeric546 unique values
0 missing
nCrsnumeric11 unique values
0 missing
Eig04_AEA.bo.numeric387 unique values
0 missing
X5Anumeric37 unique values
0 missing
nR07numeric2 unique values
0 missing
D.Dtr07numeric76 unique values
0 missing
IC3numeric510 unique values
0 missing
SpMax3_Bh.p.numeric307 unique values
0 missing
Eig04_AEA.ri.numeric435 unique values
0 missing
P_VSA_LogP_7numeric103 unique values
0 missing
SM03_EA.ri.numeric382 unique values
0 missing
ATS5mnumeric649 unique values
0 missing
SpAD_EA.bo.numeric804 unique values
0 missing
ZM2Kupnumeric923 unique values
0 missing
SM02_AEA.bo.numeric310 unique values
0 missing
molecule_id (row identifier)nominal1135 unique values
0 missing
ATS6mnumeric648 unique values
0 missing
ZM1Pernumeric951 unique values
0 missing
Eig06_AEA.bo.numeric465 unique values
0 missing
IC4numeric484 unique values
0 missing
SpMax1_Bh.e.numeric251 unique values
0 missing
ZM2Vnumeric331 unique values
0 missing
Chi0_EA.ed.numeric678 unique values
0 missing

62 properties

1135
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.57
Percentage of numeric attributes.
1.43
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.13
First quartile of kurtosis among attributes of the numeric type.
3.7
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.37
First quartile of skewness among attributes of the numeric type.
0.24
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.9
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.64
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.27
Second quartile (Median) of skewness among attributes of the numeric type.
0.55
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.15
Third quartile of kurtosis among attributes of the numeric type.
22.34
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.66
Third quartile of skewness among attributes of the numeric type.
8.73
Third quartile of standard deviation of attributes of the numeric type.
-0.12
Average class difference between consecutive instances.
78.47
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.06
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
10.26
Maximum kurtosis among attributes of the numeric type.
665.43
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.31
Maximum skewness among attributes of the numeric type.
149.04
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.51
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.25
Mean skewness among attributes of the numeric type.
18.37
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.74
Minimum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.18
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task