DEVELOPMENT... OpenML
Data
BNG(dermatology)

BNG(dermatology)

active ARFF Publicly available Visibility: public Uploaded 29-04-2014 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

35 features

class (target)nominal6 unique values
0 missing
parakeratosisnominal4 unique values
0 missing
hyperkeratosisnominal4 unique values
0 missing
clubbing_of_the_rete_ridgesnominal4 unique values
0 missing
elongation_of_the_rete_ridgesnominal4 unique values
0 missing
thinning_of_the_suprapapillary_epidermisnominal4 unique values
0 missing
spongiform_pustulenominal4 unique values
0 missing
munro_microabcessnominal4 unique values
0 missing
focal_hypergranulosisnominal4 unique values
0 missing
disappearance_of_the_granular_layernominal4 unique values
0 missing
vacuolisation_and_damage_of_basal_layernominal4 unique values
0 missing
spongiosisnominal4 unique values
0 missing
saw-tooth_appearance_of_retesnominal4 unique values
0 missing
follicular_horn_plugnominal4 unique values
0 missing
perifollicular_parakeratosisnominal4 unique values
0 missing
inflammatory_monoluclear_inflitratenominal4 unique values
0 missing
band-like_infiltratenominal4 unique values
0 missing
Agenumeric990612 unique values
0 missing
scalp_involvementnominal4 unique values
0 missing
scalingnominal4 unique values
0 missing
definite_bordersnominal4 unique values
0 missing
itchingnominal4 unique values
0 missing
koebner_phenomenonnominal4 unique values
0 missing
polygonal_papulesnominal4 unique values
0 missing
follicular_papulesnominal4 unique values
0 missing
oral_mucosal_involvementnominal4 unique values
0 missing
knee_and_elbow_involvementnominal4 unique values
0 missing
erythemanominal4 unique values
0 missing
family_historynominal2 unique values
0 missing
melanin_incontinencenominal4 unique values
0 missing
eosinophils_in_the_infiltratenominal3 unique values
0 missing
PNL_infiltratenominal4 unique values
0 missing
fibrosis_of_the_papillary_dermisnominal4 unique values
0 missing
exocytosisnominal4 unique values
0 missing
acanthosisnominal4 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
35
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
1
Number of numeric attributes.
34
Number of nominal attributes.
0.2
Average class difference between consecutive instances.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
2.44
Entropy of the target attribute values.
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.51
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
6.51
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.03
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.03
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.03
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
30.46
Percentage of instances belonging to the most frequent class.
304589
Number of instances belonging to the most frequent class.
1.98
Maximum entropy among attributes.
-0.8
Maximum kurtosis among attributes of the numeric type.
36.03
Maximum of means among attributes of the numeric type.
0.7
Maximum mutual information between the nominal attributes and the target attribute.
6
The maximum number of distinct values among attributes of the nominal type.
0.09
Maximum skewness among attributes of the numeric type.
15.43
Maximum standard deviation of attributes of the numeric type.
1.27
Average entropy of the attributes.
-0.8
Mean kurtosis among attributes of the numeric type.
36.03
Mean of means among attributes of the numeric type.
0.37
Average mutual information between the nominal attributes and the target attribute.
2.38
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
3.97
Average number of distinct values among the attributes of the nominal type.
0.09
Mean skewness among attributes of the numeric type.
15.43
Mean standard deviation of attributes of the numeric type.
0.53
Minimal entropy among attributes.
-0.8
Minimum kurtosis among attributes of the numeric type.
36.03
Minimum of means among attributes of the numeric type.
0.08
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
0.09
Minimum skewness among attributes of the numeric type.
15.43
Minimum standard deviation of attributes of the numeric type.
5.57
Percentage of instances belonging to the least frequent class.
55693
Number of instances belonging to the least frequent class.
1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.01
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.98
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.86
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
2.86
Percentage of numeric attributes.
97.14
Percentage of nominal attributes.
1
First quartile of entropy among attributes.
-0.8
First quartile of kurtosis among attributes of the numeric type.
36.03
First quartile of means among attributes of the numeric type.
0.2
First quartile of mutual information between the nominal attributes and the target attribute.
0.09
First quartile of skewness among attributes of the numeric type.
15.43
First quartile of standard deviation of attributes of the numeric type.
1.3
Second quartile (Median) of entropy among attributes.
-0.8
Second quartile (Median) of kurtosis among attributes of the numeric type.
36.03
Second quartile (Median) of means among attributes of the numeric type.
0.38
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.09
Second quartile (Median) of skewness among attributes of the numeric type.
15.43
Second quartile (Median) of standard deviation of attributes of the numeric type.
1.56
Third quartile of entropy among attributes.
-0.8
Third quartile of kurtosis among attributes of the numeric type.
36.03
Third quartile of means among attributes of the numeric type.
0.55
Third quartile of mutual information between the nominal attributes and the target attribute.
0.09
Third quartile of skewness among attributes of the numeric type.
15.43
Third quartile of standard deviation of attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.03
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.03
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.03
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.04
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.04
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.04
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.52
Standard deviation of the number of distinct values among attributes of the nominal type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.02
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

25 tasks

19 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
290 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task