DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4374

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4374

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4374 (TID: 100788), and it has 279 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric156 unique values
0 missing
SpMax1_Bh.s.numeric53 unique values
0 missing
SpMax4_Bh.s.numeric200 unique values
0 missing
nR.Csnumeric4 unique values
0 missing
TIEnumeric277 unique values
0 missing
GGI6numeric222 unique values
0 missing
JGI7numeric23 unique values
0 missing
NssNHnumeric5 unique values
0 missing
Psi_i_Anumeric224 unique values
0 missing
Psi_e_Anumeric224 unique values
0 missing
SaasCnumeric267 unique values
0 missing
GGI3numeric162 unique values
0 missing
Eig02_EA.ri.numeric208 unique values
0 missing
ATS7mnumeric255 unique values
0 missing
C.008numeric6 unique values
0 missing
ATS7snumeric257 unique values
0 missing
ATSC5snumeric277 unique values
0 missing
nArCOnumeric3 unique values
0 missing
GGI4numeric223 unique values
0 missing
P_VSA_i_4numeric123 unique values
0 missing
CATS2D_03_DLnumeric13 unique values
0 missing
CATS2D_06_ALnumeric21 unique values
0 missing
nHAccnumeric11 unique values
0 missing
O.numeric89 unique values
0 missing
ATS8snumeric256 unique values
0 missing
C.039numeric3 unique values
0 missing
CATS2D_02_DAnumeric6 unique values
0 missing
MATS5snumeric214 unique values
0 missing
CATS2D_03_DAnumeric5 unique values
0 missing
GGI5numeric206 unique values
0 missing
SpMax3_Bh.s.numeric161 unique values
0 missing
nRCONR2numeric2 unique values
0 missing
SAaccnumeric201 unique values
0 missing
N.numeric91 unique values
0 missing
PCDnumeric250 unique values
0 missing
SsssCHnumeric72 unique values
0 missing
ATS5mnumeric241 unique values
0 missing
DELSnumeric274 unique values
0 missing
MAXDPnumeric266 unique values
0 missing
P_VSA_m_3numeric88 unique values
0 missing
ATSC7snumeric276 unique values
0 missing
nCconjnumeric8 unique values
0 missing
MAXDNnumeric245 unique values
0 missing
NdssCnumeric7 unique values
0 missing
P_VSA_e_5numeric68 unique values
0 missing
P_VSA_MR_2numeric114 unique values
0 missing
NsOHnumeric5 unique values
0 missing
SdssCnumeric226 unique values
0 missing
SsOHnumeric74 unique values
0 missing
C.019numeric3 unique values
0 missing
O.057numeric4 unique values
0 missing
SssNHnumeric159 unique values
0 missing
JGI4numeric42 unique values
0 missing
ATS5snumeric257 unique values
0 missing
GGI7numeric208 unique values
0 missing
PCRnumeric183 unique values
0 missing
ATSC8enumeric227 unique values
0 missing
ATSC6snumeric277 unique values
0 missing
nR.Ctnumeric4 unique values
0 missing
C.017numeric4 unique values
0 missing
ATS6mnumeric249 unique values
0 missing
molecule_id (row identifier)nominal279 unique values
0 missing
ATSC6enumeric241 unique values
0 missing
ATSC1snumeric272 unique values
0 missing
nROHnumeric5 unique values
0 missing
ATSC5enumeric240 unique values
0 missing
ATS6snumeric251 unique values
0 missing
ATSC7enumeric247 unique values
0 missing
P_VSA_LogP_4numeric161 unique values
0 missing

62 properties

279
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.8
First quartile of kurtosis among attributes of the numeric type.
0.42
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.06
First quartile of skewness among attributes of the numeric type.
0.44
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.39
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.91
Second quartile (Median) of skewness among attributes of the numeric type.
0.69
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
5.18
Third quartile of kurtosis among attributes of the numeric type.
5.96
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.76
Third quartile of skewness among attributes of the numeric type.
2.59
Third quartile of standard deviation of attributes of the numeric type.
0.33
Average class difference between consecutive instances.
12.61
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.25
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
73.42
Maximum kurtosis among attributes of the numeric type.
105.88
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
5.66
Maximum skewness among attributes of the numeric type.
46
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
6.2
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.94
Mean skewness among attributes of the numeric type.
6.66
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.94
Minimum kurtosis among attributes of the numeric type.
-0.54
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-7.3
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task