DEVELOPMENT... OpenML
Data
BNG(breast-w)

BNG(breast-w)

active ARFF Publicly available Visibility: public Uploaded 28-04-2014 by Jason
0 likes downloaded by 13 people , 15 total downloads 0 issues 0 downvotes
  • artificial mythbusting_1 study_1 study_41 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

10 features

Class (target)nominal2 unique values
0 missing
Clump_Thicknessnumeric26387 unique values
0 missing
Cell_Size_Uniformitynumeric17780 unique values
0 missing
Cell_Shape_Uniformitynumeric16030 unique values
0 missing
Marginal_Adhesionnumeric13232 unique values
0 missing
Single_Epi_Cell_Sizenumeric10910 unique values
0 missing
Bare_Nucleinumeric8561 unique values
0 missing
Bland_Chromatinnumeric11991 unique values
0 missing
Normal_Nucleolinumeric11095 unique values
0 missing
Mitosesnumeric2988 unique values
0 missing

107 properties

39366
Number of instances (rows) of the dataset.
10
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
9
Number of numeric attributes.
1
Number of nominal attributes.
0.55
Average class difference between consecutive instances.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Entropy of the target attribute values.
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.08
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.02
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.02
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.02
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
65.59
Percentage of instances belonging to the most frequent class.
25820
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
12.39
Maximum kurtosis among attributes of the numeric type.
4.39
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
3.52
Maximum skewness among attributes of the numeric type.
3.62
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.64
Mean kurtosis among attributes of the numeric type.
3.13
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
1.47
Mean skewness among attributes of the numeric type.
2.75
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.73
Minimum kurtosis among attributes of the numeric type.
1.59
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
0.6
Minimum skewness among attributes of the numeric type.
1.71
Minimum standard deviation of attributes of the numeric type.
34.41
Percentage of instances belonging to the least frequent class.
13546
Number of instances belonging to the least frequent class.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.04
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
10
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
90
Percentage of numeric attributes.
10
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.27
First quartile of kurtosis among attributes of the numeric type.
2.86
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
1.06
First quartile of skewness among attributes of the numeric type.
2.32
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.12
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.2
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.24
Second quartile (Median) of skewness among attributes of the numeric type.
2.87
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.49
Third quartile of kurtosis among attributes of the numeric type.
3.45
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.6
Third quartile of skewness among attributes of the numeric type.
3.05
Third quartile of standard deviation of attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.02
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.02
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.02
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.02
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

17 tasks

354 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
225 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
190 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
73 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: Class
25 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task