DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1822

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1822

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1822 (TID: 84), and it has 113 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric84 unique values
0 missing
S2Knumeric90 unique values
0 missing
SpMax1_Bh.p.numeric67 unique values
0 missing
TRSnumeric11 unique values
0 missing
MPC09numeric62 unique values
0 missing
SRW08numeric74 unique values
0 missing
MWC04numeric74 unique values
0 missing
SM15_EA.ri.numeric90 unique values
0 missing
SM14_EA.ri.numeric89 unique values
0 missing
SM13_EA.ri.numeric89 unique values
0 missing
SpMaxA_EA.bo.numeric44 unique values
0 missing
SpAD_AEA.bo.numeric92 unique values
0 missing
S0Knumeric49 unique values
0 missing
RDSQnumeric80 unique values
0 missing
IDDMnumeric68 unique values
0 missing
Chi0_EA.bo.numeric80 unique values
0 missing
Eig05_EA.ri.numeric68 unique values
0 missing
MWC05numeric76 unique values
0 missing
MWC06numeric76 unique values
0 missing
SRW06numeric66 unique values
0 missing
MPC08numeric61 unique values
0 missing
piPC04numeric85 unique values
0 missing
SM08_EA.dm.numeric50 unique values
0 missing
ATS4mnumeric99 unique values
0 missing
Eig10_AEA.dm.numeric72 unique values
0 missing
X0vnumeric91 unique values
0 missing
ZM2Kupnumeric93 unique values
0 missing
Eig07_EAnumeric65 unique values
0 missing
SM15_AEA.bo.numeric65 unique values
0 missing
CATS2D_04_DLnumeric9 unique values
0 missing
LOCnumeric59 unique values
0 missing
SdsssPnumeric37 unique values
0 missing
SpMAD_EA.ri.numeric63 unique values
0 missing
GATS1enumeric76 unique values
0 missing
SM14_EA.dm.numeric37 unique values
0 missing
SM12_EA.dm.numeric40 unique values
0 missing
SM10_EA.dm.numeric42 unique values
0 missing
MPC10numeric69 unique values
0 missing
GATS1snumeric83 unique values
0 missing
piPC06numeric87 unique values
0 missing
piPC05numeric83 unique values
0 missing
SpMAD_EA.dm.numeric78 unique values
0 missing
Eta_alphanumeric75 unique values
0 missing
piPC09numeric91 unique values
0 missing
piPC10numeric91 unique values
0 missing
SM02_EA.ri.numeric77 unique values
0 missing
piPC08numeric91 unique values
0 missing
piPC07numeric89 unique values
0 missing
Eig05_AEA.ri.numeric69 unique values
0 missing
SpMaxA_EA.dm.numeric43 unique values
0 missing
molecule_id (row identifier)nominal113 unique values
0 missing
piIDnumeric88 unique values
0 missing
Rperimnumeric15 unique values
0 missing
MWC03numeric59 unique values
0 missing
SpAD_AEA.ed.numeric80 unique values
0 missing
ZM2numeric59 unique values
0 missing
SpMaxA_AEA.bo.numeric51 unique values
0 missing
SM04_EA.ri.numeric82 unique values
0 missing
SpAD_EA.ri.numeric93 unique values
0 missing
Eig07_EA.ed.numeric68 unique values
0 missing
SM02_AEA.ri.numeric68 unique values
0 missing
SMTIVnumeric99 unique values
0 missing
piPC03numeric71 unique values
0 missing
ATS8mnumeric99 unique values
0 missing
Eig01_EA.dm.numeric18 unique values
0 missing
SpMax_EA.dm.numeric18 unique values
0 missing

62 properties

113
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.48
Percentage of numeric attributes.
1.52
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.64
First quartile of kurtosis among attributes of the numeric type.
3.23
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.22
First quartile of skewness among attributes of the numeric type.
0.39
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-1.35
Second quartile (Median) of kurtosis among attributes of the numeric type.
6.18
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.1
Second quartile (Median) of skewness among attributes of the numeric type.
0.62
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0.54
Third quartile of kurtosis among attributes of the numeric type.
13.2
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.06
Third quartile of skewness among attributes of the numeric type.
3.45
Third quartile of standard deviation of attributes of the numeric type.
-0.01
Average class difference between consecutive instances.
655.54
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.58
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
1.98
Maximum kurtosis among attributes of the numeric type.
40763.73
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.32
Maximum skewness among attributes of the numeric type.
30080.91
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-0.04
Mean skewness among attributes of the numeric type.
472.36
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.79
Minimum kurtosis among attributes of the numeric type.
-3.7
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.79
Minimum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task