DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4202

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4202

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4202 (TID: 30035), and it has 678 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric84 unique values
0 missing
ATSC5pnumeric650 unique values
0 missing
Eig07_AEA.ri.numeric495 unique values
0 missing
Eig09_EA.ri.numeric461 unique values
0 missing
SpMax8_Bh.i.numeric381 unique values
0 missing
RDCHInumeric532 unique values
0 missing
ECCnumeric345 unique values
0 missing
X4solnumeric597 unique values
0 missing
X0solnumeric414 unique values
0 missing
Eig09_AEA.dm.numeric475 unique values
0 missing
CSInumeric463 unique values
0 missing
ZM1Madnumeric643 unique values
0 missing
SM03_AEA.dm.numeric420 unique values
0 missing
Eig09_EAnumeric420 unique values
0 missing
SM03_AEA.ri.numeric530 unique values
0 missing
Eig08_EA.ed.numeric530 unique values
0 missing
UNIPnumeric179 unique values
0 missing
ICRnumeric398 unique values
0 missing
SpMax5_Bh.m.numeric436 unique values
0 missing
AMRnumeric648 unique values
0 missing
MWnumeric602 unique values
0 missing
X1vnumeric630 unique values
0 missing
SpMax8_Bh.p.numeric379 unique values
0 missing
X0vnumeric615 unique values
0 missing
SMTInumeric614 unique values
0 missing
Eta_betanumeric139 unique values
0 missing
Eig09_AEA.ed.numeric460 unique values
0 missing
ON1numeric220 unique values
0 missing
Eig09_AEA.ri.numeric457 unique values
0 missing
SMTIVnumeric649 unique values
0 missing
ATS2mnumeric465 unique values
0 missing
Chi1_EA.dm.numeric597 unique values
0 missing
X3solnumeric597 unique values
0 missing
Eig15_AEA.dm.numeric502 unique values
0 missing
IDMTnumeric620 unique values
0 missing
SpMax2_Bh.m.numeric307 unique values
0 missing
X3vnumeric628 unique values
0 missing
AECCnumeric511 unique values
0 missing
ATS1mnumeric446 unique values
0 missing
Xindexnumeric244 unique values
0 missing
Eig08_EA.ri.numeric458 unique values
0 missing
X2solnumeric589 unique values
0 missing
XMODnumeric645 unique values
0 missing
Vindexnumeric197 unique values
0 missing
Eta_betaPnumeric48 unique values
0 missing
SpMax6_Bh.m.numeric438 unique values
0 missing
X4vnumeric610 unique values
0 missing
Yindexnumeric371 unique values
0 missing
Chi0_EA.dm.numeric587 unique values
0 missing
Eig08_AEA.bo.numeric432 unique values
0 missing
Eig08_AEA.ri.numeric465 unique values
0 missing
DECCnumeric490 unique values
0 missing
P_VSA_s_3numeric599 unique values
0 missing
TPSA.Tot.numeric449 unique values
0 missing
Eig07_EAnumeric442 unique values
0 missing
GMTIVnumeric656 unique values
0 missing
Eig07_AEA.bo.numeric453 unique values
0 missing
Eig07_EA.bo.numeric462 unique values
0 missing
X1solnumeric545 unique values
0 missing
IDEnumeric494 unique values
0 missing
CATS2D_02_APnumeric5 unique values
0 missing
HVcpxnumeric478 unique values
0 missing
SM15_AEA.bo.numeric442 unique values
0 missing
molecule_id (row identifier)nominal678 unique values
0 missing
SpMax1_Bh.p.numeric241 unique values
0 missing
ZM2Madnumeric657 unique values
0 missing
SpMax7_Bh.m.numeric401 unique values
0 missing
Eig08_AEA.dm.numeric465 unique values
0 missing
CATS2D_08_DPnumeric4 unique values
0 missing
MSDnumeric583 unique values
0 missing
P_VSA_e_3numeric265 unique values
0 missing

62 properties

678
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.1
First quartile of kurtosis among attributes of the numeric type.
2.29
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.47
First quartile of skewness among attributes of the numeric type.
0.39
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.06
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.9
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.29
Second quartile (Median) of skewness among attributes of the numeric type.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.63
Third quartile of kurtosis among attributes of the numeric type.
20.61
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.83
Third quartile of skewness among attributes of the numeric type.
8.1
Third quartile of standard deviation of attributes of the numeric type.
0.2
Average class difference between consecutive instances.
1150.59
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.1
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
13.78
Maximum kurtosis among attributes of the numeric type.
30940.51
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.43
Maximum skewness among attributes of the numeric type.
19115.72
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
1.75
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.14
Mean skewness among attributes of the numeric type.
727.74
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.74
Minimum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.88
Minimum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task