DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2428

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2428

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2428 (TID: 10250), and it has 124 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric59 unique values
0 missing
SRW09numeric46 unique values
0 missing
H.049numeric5 unique values
0 missing
MPC05numeric78 unique values
0 missing
MPC03numeric54 unique values
0 missing
SpMax1_Bh.v.numeric84 unique values
0 missing
SpMax1_Bh.i.numeric84 unique values
0 missing
nR12numeric5 unique values
0 missing
nR09numeric6 unique values
0 missing
NaaaCnumeric5 unique values
0 missing
MWC08numeric114 unique values
0 missing
C.034numeric5 unique values
0 missing
C.025numeric8 unique values
0 missing
SpMax_EA.bo.numeric98 unique values
0 missing
SpDiam_EA.bo.numeric98 unique values
0 missing
SM11_AEA.ri.numeric98 unique values
0 missing
Eig01_EA.bo.numeric98 unique values
0 missing
ATS6pnumeric119 unique values
0 missing
SpMAD_EAnumeric82 unique values
0 missing
X3Anumeric41 unique values
0 missing
MPC06numeric90 unique values
0 missing
MPC07numeric94 unique values
0 missing
MPC08numeric92 unique values
0 missing
MPC09numeric108 unique values
0 missing
MPC10numeric102 unique values
0 missing
MWC09numeric114 unique values
0 missing
MWC10numeric112 unique values
0 missing
SaaaCnumeric80 unique values
0 missing
TWCnumeric112 unique values
0 missing
NRSnumeric5 unique values
0 missing
SM07_AEA.bo.numeric114 unique values
0 missing
X4Anumeric37 unique values
0 missing
N.075numeric6 unique values
0 missing
NaaNnumeric6 unique values
0 missing
SpMax1_Bh.p.numeric86 unique values
0 missing
piPC06numeric114 unique values
0 missing
piPC05numeric113 unique values
0 missing
piPC04numeric113 unique values
0 missing
piPC03numeric114 unique values
0 missing
Eig02_EA.bo.numeric103 unique values
0 missing
SRW10numeric114 unique values
0 missing
Eig05_AEA.ed.numeric108 unique values
0 missing
ATS6vnumeric114 unique values
0 missing
piPC07numeric114 unique values
0 missing
RFDnumeric31 unique values
0 missing
RCInumeric31 unique values
0 missing
Rbridnumeric7 unique values
0 missing
nCIRnumeric13 unique values
0 missing
SpMin2_Bh.p.numeric81 unique values
0 missing
P_VSA_MR_7numeric54 unique values
0 missing
NNRSnumeric13 unique values
0 missing
molecule_id (row identifier)nominal124 unique values
0 missing
piPC08numeric118 unique values
0 missing
piPC09numeric119 unique values
0 missing
piPC10numeric121 unique values
0 missing
SM04_EA.bo.numeric117 unique values
0 missing
SM05_EA.bo.numeric116 unique values
0 missing
SM06_EA.bo.numeric117 unique values
0 missing
SM07_EA.bo.numeric117 unique values
0 missing
SM08_EA.bo.numeric116 unique values
0 missing
SM09_EA.bo.numeric115 unique values
0 missing
SM10_EA.bo.numeric115 unique values
0 missing
SM11_EA.bo.numeric115 unique values
0 missing
SM12_AEA.ri.numeric103 unique values
0 missing
SM12_EA.bo.numeric113 unique values
0 missing
SpMax1_Bh.e.numeric92 unique values
0 missing
GGI5numeric107 unique values
0 missing

62 properties

124
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.65
First quartile of kurtosis among attributes of the numeric type.
2.58
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.26
First quartile of skewness among attributes of the numeric type.
0.35
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.36
Second quartile (Median) of kurtosis among attributes of the numeric type.
5
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.49
Second quartile (Median) of skewness among attributes of the numeric type.
0.48
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0
Third quartile of kurtosis among attributes of the numeric type.
8.24
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.69
Third quartile of skewness among attributes of the numeric type.
0.89
Third quartile of standard deviation of attributes of the numeric type.
0.27
Average class difference between consecutive instances.
6.42
Mean of means among attributes of the numeric type.
Entropy of the target attribute values.
0.54
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
10.24
Maximum kurtosis among attributes of the numeric type.
39.41
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
3.21
Maximum skewness among attributes of the numeric type.
34.2
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.04
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.51
Mean skewness among attributes of the numeric type.
1.48
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.07
Minimum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-1.42
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task