DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5568

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5568

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by James
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5568 (TID: 101019), and it has 556 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric63 unique values
0 missing
PHInumeric488 unique values
0 missing
Eig11_AEA.ri.numeric386 unique values
0 missing
HDcpxnumeric213 unique values
0 missing
SpMaxA_AEA.ri.numeric138 unique values
0 missing
SpMin7_Bh.m.numeric327 unique values
0 missing
SpMin5_Bh.s.numeric338 unique values
0 missing
Chi1_EA.bo.numeric495 unique values
0 missing
Eig04_EA.dm.numeric40 unique values
0 missing
SpMin6_Bh.s.numeric326 unique values
0 missing
Eig06_AEA.dm.numeric422 unique values
0 missing
Eig05_EA.dm.numeric20 unique values
0 missing
ATS1mnumeric388 unique values
0 missing
SpMin7_Bh.v.numeric340 unique values
0 missing
SM03_AEA.ri.numeric436 unique values
0 missing
Eig08_EA.ed.numeric436 unique values
0 missing
Eig08_AEA.dm.numeric403 unique values
0 missing
Eig08_AEA.bo.numeric378 unique values
0 missing
Eig14_AEA.dm.numeric409 unique values
0 missing
Eig11_EAnumeric343 unique values
0 missing
Dznumeric208 unique values
0 missing
ATS2enumeric416 unique values
0 missing
ATSC2mnumeric518 unique values
0 missing
ATS1inumeric403 unique values
0 missing
SpMax8_Bh.m.numeric344 unique values
0 missing
DLS_02numeric5 unique values
0 missing
SpMaxA_EAnumeric113 unique values
0 missing
SM05_AEA.dm.numeric343 unique values
0 missing
Eig13_AEA.dm.numeric401 unique values
0 missing
S0Knumeric198 unique values
0 missing
TIC0numeric482 unique values
0 missing
IACnumeric482 unique values
0 missing
IDMnumeric444 unique values
0 missing
SpMax8_Bh.i.numeric328 unique values
0 missing
Eig07_AEA.dm.numeric409 unique values
0 missing
SpMin6_Bh.m.numeric318 unique values
0 missing
CENTnumeric455 unique values
0 missing
SpMaxA_EA.bo.numeric140 unique values
0 missing
SM09_AEA.dm.numeric374 unique values
0 missing
Eig15_EA.ri.numeric452 unique values
0 missing
Eig15_EAnumeric374 unique values
0 missing
Eig15_AEA.ri.numeric430 unique values
0 missing
ATS8mnumeric459 unique values
0 missing
Eig10_AEA.dm.numeric377 unique values
0 missing
ATSC3mnumeric536 unique values
0 missing
SpMaxA_EA.ed.numeric252 unique values
0 missing
P_VSA_LogP_7numeric97 unique values
0 missing
H.047numeric29 unique values
0 missing
Eig05_AEA.dm.numeric423 unique values
0 missing
C.006numeric10 unique values
0 missing
Eig11_AEA.dm.numeric365 unique values
0 missing
Eig12_AEA.dm.numeric363 unique values
0 missing
Chi0_EA.dm.numeric488 unique values
0 missing
Chi1_EA.dm.numeric495 unique values
0 missing
ATS5enumeric452 unique values
0 missing
SpMin5_Bh.e.numeric349 unique values
0 missing
SpMax8_Bh.v.numeric326 unique values
0 missing
SsssNnumeric131 unique values
0 missing
SM10_AEA.ri.numeric431 unique values
0 missing
Eig15_EA.ed.numeric431 unique values
0 missing
SpMaxA_AEA.bo.numeric147 unique values
0 missing
Eta_betaSnumeric87 unique values
0 missing
SpMax8_Bh.p.numeric324 unique values
0 missing
molecule_id (row identifier)nominal556 unique values
0 missing
Eig09_AEA.dm.numeric401 unique values
0 missing
P_VSA_i_3numeric331 unique values
0 missing
ATS5inumeric450 unique values
0 missing
S1Knumeric455 unique values
0 missing
MWnumeric496 unique values
0 missing
ATS3mnumeric412 unique values
0 missing
SpMaxA_AEA.ed.numeric182 unique values
0 missing

107 properties

556
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
0.44
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.13
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
8.38
Maximum kurtosis among attributes of the numeric type.
1393.91
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.94
Maximum skewness among attributes of the numeric type.
959.01
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.95
Mean kurtosis among attributes of the numeric type.
39.92
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.05
Mean skewness among attributes of the numeric type.
19.78
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.8
Minimum kurtosis among attributes of the numeric type.
-0.8
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.08
Minimum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.16
First quartile of kurtosis among attributes of the numeric type.
0.63
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.58
First quartile of skewness among attributes of the numeric type.
0.26
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.03
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0.12
Second quartile (Median) of skewness among attributes of the numeric type.
0.66
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.2
Third quartile of kurtosis among attributes of the numeric type.
6.48
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.64
Third quartile of skewness among attributes of the numeric type.
1.94
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task