DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2007628

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2007628

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by James
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2007628 (TID: 104486), and it has 165 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric128 unique values
0 missing
ATS7vnumeric149 unique values
0 missing
ATS5mnumeric153 unique values
0 missing
ATS7snumeric156 unique values
0 missing
ATS7pnumeric159 unique values
0 missing
ATS7mnumeric158 unique values
0 missing
ATS7inumeric156 unique values
0 missing
ATS7enumeric160 unique values
0 missing
ATS6vnumeric157 unique values
0 missing
ATS6snumeric153 unique values
0 missing
ATS6pnumeric159 unique values
0 missing
ATS6mnumeric158 unique values
0 missing
ATS6inumeric150 unique values
0 missing
ATS6enumeric157 unique values
0 missing
ATS5vnumeric156 unique values
0 missing
ATS5snumeric155 unique values
0 missing
ATS5pnumeric152 unique values
0 missing
ATS5inumeric151 unique values
0 missing
ATSC1mnumeric163 unique values
0 missing
ATSC2snumeric164 unique values
0 missing
ATSC2pnumeric163 unique values
0 missing
ATSC2mnumeric162 unique values
0 missing
ATSC2inumeric155 unique values
0 missing
ATSC2enumeric139 unique values
0 missing
ATSC1vnumeric158 unique values
0 missing
ATSC1snumeric164 unique values
0 missing
ATSC1pnumeric161 unique values
0 missing
ATS8enumeric160 unique values
0 missing
ATSC1inumeric143 unique values
0 missing
ATSC1enumeric119 unique values
0 missing
ATS8vnumeric153 unique values
0 missing
ATS8snumeric158 unique values
0 missing
ATS8pnumeric154 unique values
0 missing
ATS8mnumeric155 unique values
0 missing
ATS8inumeric155 unique values
0 missing
ARRnumeric80 unique values
0 missing
ATS2inumeric149 unique values
0 missing
ATS2enumeric154 unique values
0 missing
ATS1vnumeric144 unique values
0 missing
ATS1snumeric144 unique values
0 missing
ATS1pnumeric149 unique values
0 missing
ATS1mnumeric146 unique values
0 missing
ATS1inumeric148 unique values
0 missing
ATS1enumeric150 unique values
0 missing
ATS2mnumeric143 unique values
0 missing
AMWnumeric157 unique values
0 missing
AMRnumeric163 unique values
0 missing
ALOGP2numeric164 unique values
0 missing
ALOGPnumeric159 unique values
0 missing
AECCnumeric156 unique values
0 missing
AACnumeric136 unique values
0 missing
GATS2snumeric137 unique values
0 missing
ATS3snumeric153 unique values
0 missing
ATS5enumeric157 unique values
0 missing
ATS4vnumeric151 unique values
0 missing
ATS4snumeric156 unique values
0 missing
ATS4pnumeric149 unique values
0 missing
ATS4mnumeric155 unique values
0 missing
ATS4inumeric155 unique values
0 missing
ATS4enumeric156 unique values
0 missing
ATS3vnumeric153 unique values
0 missing
molecule_id (row identifier)nominal165 unique values
0 missing
ATS3pnumeric152 unique values
0 missing
ATS3mnumeric151 unique values
0 missing
ATS3inumeric151 unique values
0 missing
ATS3enumeric154 unique values
0 missing
ATS2vnumeric146 unique values
0 missing
ATS2snumeric152 unique values
0 missing
ATS2pnumeric146 unique values
0 missing

107 properties

165
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
0.51
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.42
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
22.2
Maximum kurtosis among attributes of the numeric type.
99.3
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
2.24
Maximum skewness among attributes of the numeric type.
26.72
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
4.66
Mean kurtosis among attributes of the numeric type.
6.46
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
-1.07
Mean skewness among attributes of the numeric type.
1.63
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.63
Minimum kurtosis among attributes of the numeric type.
0.12
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-4.03
Minimum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.55
Percentage of numeric attributes.
1.45
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.31
First quartile of kurtosis among attributes of the numeric type.
3.53
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-1.69
First quartile of skewness among attributes of the numeric type.
0.27
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
3.56
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.96
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-1.13
Second quartile (Median) of skewness among attributes of the numeric type.
0.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
7.42
Third quartile of kurtosis among attributes of the numeric type.
4.95
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
-0.16
Third quartile of skewness among attributes of the numeric type.
0.78
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task