DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2635

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2635

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by James
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2635 (TID: 11160), and it has 630 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric397 unique values
0 missing
ATS8pnumeric533 unique values
0 missing
NdSnumeric3 unique values
0 missing
P_VSA_s_5numeric44 unique values
0 missing
X2numeric557 unique values
0 missing
SM07_AEA.dm.numeric413 unique values
0 missing
Eig13_EA.ri.numeric460 unique values
0 missing
Eig13_EAnumeric413 unique values
0 missing
ATS6snumeric527 unique values
0 missing
P_VSA_LogP_2numeric218 unique values
0 missing
P_VSA_v_2numeric404 unique values
0 missing
P_VSA_e_5numeric155 unique values
0 missing
P_VSA_m_3numeric195 unique values
0 missing
nArCOnumeric3 unique values
0 missing
C.039numeric3 unique values
0 missing
CATS2D_03_ALnumeric22 unique values
0 missing
O.numeric131 unique values
0 missing
S.108numeric3 unique values
0 missing
CATS2D_04_LLnumeric38 unique values
0 missing
Eig14_AEA.ed.numeric400 unique values
0 missing
ATS7vnumeric520 unique values
0 missing
ATS7pnumeric525 unique values
0 missing
ATS6vnumeric507 unique values
0 missing
ATS6pnumeric520 unique values
0 missing
ATS5vnumeric505 unique values
0 missing
ATS4vnumeric485 unique values
0 missing
ATS3vnumeric459 unique values
0 missing
Eta_alpha_Anumeric104 unique values
0 missing
ATS8vnumeric522 unique values
0 missing
Eig04_EA.ri.numeric457 unique values
0 missing
DELSnumeric625 unique values
0 missing
P_VSA_s_6numeric405 unique values
0 missing
X2Avnumeric133 unique values
0 missing
SAaccnumeric401 unique values
0 missing
ATSC6snumeric626 unique values
0 missing
ATSC8inumeric523 unique values
0 missing
N.numeric103 unique values
0 missing
NdsNnumeric4 unique values
0 missing
C.018numeric2 unique values
0 missing
NaaSnumeric3 unique values
0 missing
SdsCHnumeric226 unique values
0 missing
SpMax_EA.ri.numeric342 unique values
0 missing
Eig01_EA.ri.numeric342 unique values
0 missing
SdssCnumeric510 unique values
0 missing
SaaSnumeric109 unique values
0 missing
SdsNnumeric108 unique values
0 missing
H.numeric216 unique values
0 missing
DLS_04numeric9 unique values
0 missing
Hynumeric313 unique values
0 missing
P_VSA_LogP_4numeric276 unique values
0 missing
nCconjnumeric11 unique values
0 missing
nThiazolesnumeric3 unique values
0 missing
TPSA.NO.numeric375 unique values
0 missing
CATS2D_02_ALnumeric16 unique values
0 missing
ATSC4enumeric453 unique values
0 missing
CATS2D_06_DLnumeric16 unique values
0 missing
CATS2D_05_DLnumeric17 unique values
0 missing
SdSnumeric147 unique values
0 missing
CATS2D_05_AAnumeric9 unique values
0 missing
ATSC3enumeric419 unique values
0 missing
H.050numeric9 unique values
0 missing
Eta_epsi_Anumeric231 unique values
0 missing
nHDonnumeric9 unique values
0 missing
molecule_id (row identifier)nominal630 unique values
0 missing
C.006numeric12 unique values
0 missing
SpDiam_EA.ri.numeric351 unique values
0 missing
SssNHnumeric314 unique values
0 missing
P_VSA_p_2numeric380 unique values
0 missing
MATS1snumeric228 unique values
0 missing
CATS2D_03_LLnumeric42 unique values
0 missing
GATS1enumeric352 unique values
0 missing
C.044numeric3 unique values
0 missing

107 properties

630
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
0.34
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.11
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
32.18
Maximum kurtosis among attributes of the numeric type.
128.5
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
4.43
Maximum skewness among attributes of the numeric type.
58.18
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
5.32
Mean kurtosis among attributes of the numeric type.
16.12
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.97
Mean skewness among attributes of the numeric type.
8.77
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.25
Minimum kurtosis among attributes of the numeric type.
-0.43
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-2.17
Minimum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.61
Percentage of numeric attributes.
1.39
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.16
First quartile of kurtosis among attributes of the numeric type.
0.46
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.15
First quartile of skewness among attributes of the numeric type.
0.42
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
4.57
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.32
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.17
Second quartile (Median) of skewness among attributes of the numeric type.
0.76
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
7.66
Third quartile of kurtosis among attributes of the numeric type.
6.09
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.03
Third quartile of skewness among attributes of the numeric type.
3.66
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task