DEVELOPMENT... OpenML
Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1918

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1918

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by James
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1918 (TID: 12376), and it has 174 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric131 unique values
0 missing
SsssCHnumeric82 unique values
0 missing
MATS4pnumeric132 unique values
0 missing
nDBnumeric6 unique values
0 missing
nOnumeric8 unique values
0 missing
CATS2D_06_NLnumeric5 unique values
0 missing
nRNH2numeric2 unique values
0 missing
N.066numeric2 unique values
0 missing
CATS2D_05_PLnumeric3 unique values
0 missing
nCconjnumeric6 unique values
0 missing
P_VSA_MR_2numeric41 unique values
0 missing
GATS5pnumeric136 unique values
0 missing
CATS2D_03_ALnumeric12 unique values
0 missing
P_VSA_s_6numeric59 unique values
0 missing
NssNHnumeric4 unique values
0 missing
CATS2D_02_DDnumeric3 unique values
0 missing
CATS2D_06_PLnumeric5 unique values
0 missing
CATS2D_03_DAnumeric4 unique values
0 missing
Mvnumeric90 unique values
0 missing
CATS2D_02_PNnumeric2 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
Eta_betaP_Anumeric86 unique values
0 missing
MLOGP2numeric102 unique values
0 missing
GATS1mnumeric101 unique values
0 missing
H.numeric78 unique values
0 missing
nCsnumeric9 unique values
0 missing
SdsCHnumeric48 unique values
0 missing
CATS2D_00_DDnumeric2 unique values
0 missing
CATS2D_00_DPnumeric2 unique values
0 missing
CATS2D_00_PPnumeric2 unique values
0 missing
NsNH2numeric2 unique values
0 missing
CATS2D_02_DNnumeric2 unique values
0 missing
RBFnumeric75 unique values
0 missing
Eta_L_Anumeric84 unique values
0 missing
MATS3enumeric120 unique values
0 missing
MATS5snumeric141 unique values
0 missing
P_VSA_p_2numeric46 unique values
0 missing
SssNHnumeric83 unique values
0 missing
P_VSA_s_5numeric15 unique values
0 missing
Eig02_AEA.dm.numeric71 unique values
0 missing
CATS2D_02_DLnumeric9 unique values
0 missing
SdssCnumeric155 unique values
0 missing
nCsp3numeric14 unique values
0 missing
TPSA.NO.numeric46 unique values
0 missing
nRCOOHnumeric3 unique values
0 missing
MATS7inumeric145 unique values
0 missing
MATS5enumeric136 unique values
0 missing
CATS2D_04_DLnumeric12 unique values
0 missing
GATS5enumeric149 unique values
0 missing
C.040numeric5 unique values
0 missing
GATS5snumeric144 unique values
0 missing
molecule_id (row identifier)nominal174 unique values
0 missing
P_VSA_e_5numeric28 unique values
0 missing
GATS4inumeric143 unique values
0 missing
BLTA96numeric98 unique values
0 missing
BLTD48numeric95 unique values
0 missing
BLTF96numeric96 unique values
0 missing
MLOGPnumeric102 unique values
0 missing
NssCH2numeric9 unique values
0 missing
GATS1vnumeric103 unique values
0 missing
TPSA.Tot.numeric51 unique values
0 missing
P_VSA_LogP_4numeric35 unique values
0 missing
RBNnumeric10 unique values
0 missing
ARRnumeric47 unique values
0 missing
Eig02_EA.dm.numeric20 unique values
0 missing
MATS4inumeric127 unique values
0 missing
SsNH2numeric72 unique values
0 missing

107 properties

174
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
0.09
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.39
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
4.72
Maximum kurtosis among attributes of the numeric type.
166.96
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
1.87
Maximum skewness among attributes of the numeric type.
35.74
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.38
Mean kurtosis among attributes of the numeric type.
15.81
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.29
Mean skewness among attributes of the numeric type.
4.63
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-2.02
Minimum kurtosis among attributes of the numeric type.
-2.05
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.74
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.51
Percentage of numeric attributes.
1.49
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.4
First quartile of kurtosis among attributes of the numeric type.
0.51
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.09
First quartile of skewness among attributes of the numeric type.
0.3
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.77
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.9
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.26
Second quartile (Median) of skewness among attributes of the numeric type.
0.82
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.28
Third quartile of kurtosis among attributes of the numeric type.
3.15
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.74
Third quartile of skewness among attributes of the numeric type.
2.15
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task