DEVELOPMENT... OpenML
Data
mfeat-morphological

mfeat-morphological

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jason
1 likes downloaded by 19 people , 22 total downloads 0 issues 0 downvotes
  • OpenML-CC18 OpenML100 study_1 study_123 study_14 study_34 study_37 study_41 study_52 study_7 study_70 study_76 study_98 study_99 study_225 study_236 study_253 study_268 study_274 study_274 study_274 study_274 study_274 study_274 study_274 study_274 study_283 study_283 study_283 study_283 study_283 study_283 study_283 study_283 study_284 study_284 study_284 study_284 study_284 study_284 study_284 study_284
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Robert P.W. Duin, Department of Applied Physics, Delft University of Technology Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Multiple+Features) - 1998 Please cite: [UCI](https://archive.ics.uci.edu/ml/citation_policy.html) Multiple Features Dataset: Morphological One of a set of 6 datasets describing features of handwritten numerals (0 - 9) extracted from a collection of Dutch utility maps. Corresponding patterns in different datasets correspond to the same original character. 200 instances per class (for a total of 2,000 instances) have been digitized in binary images. In this dataset, these digits are represented in terms of 6 morphological features. ### Attribute Information The meaning of the features is mostly unknown. They are never named in the original files, and the paper only talks about 'morphological features, such as the number of endpoints'. ### Relevant Papers A slightly different version of the database is used in M. van Breukelen, R.P.W. Duin, D.M.J. Tax, and J.E. den Hartog, Handwritten digit recognition by combined classifiers, Kybernetika, vol. 34, no. 4, 1998, 381-386. The database as is is used in: A.K. Jain, R.P.W. Duin, J. Mao, Statistical Pattern Recognition: A Review, IEEE Transactions on Pattern Analysis and Machine Intelligence archive, Volume 22 Issue 1, January 2000

7 features

class (target)nominal10 unique values
0 missing
att1numeric3 unique values
0 missing
att2numeric7 unique values
0 missing
att3numeric6 unique values
0 missing
att4numeric1717 unique values
0 missing
att5numeric1886 unique values
0 missing
att6numeric1888 unique values
0 missing

107 properties

2000
Number of instances (rows) of the dataset.
7
Number of attributes (columns) of the dataset.
10
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
6
Number of numeric attributes.
1
Number of nominal attributes.
1
Average class difference between consecutive instances.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.3
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.3
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
3.32
Entropy of the target attribute values.
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.8
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
10
Percentage of instances belonging to the most frequent class.
200
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
0.08
Maximum kurtosis among attributes of the numeric type.
6155.2
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
10
The maximum number of distinct values among attributes of the nominal type.
1.01
Maximum skewness among attributes of the numeric type.
3757.63
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.54
Mean kurtosis among attributes of the numeric type.
1052.7
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
10
Average number of distinct values among the attributes of the nominal type.
0.53
Mean skewness among attributes of the numeric type.
630.91
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.04
Minimum kurtosis among attributes of the numeric type.
0.49
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
10
The minimal number of distinct values among attributes of the nominal type.
-0.06
Minimum skewness among attributes of the numeric type.
0.29
Minimum standard deviation of attributes of the numeric type.
10
Percentage of instances belonging to the least frequent class.
200
Number of instances belonging to the least frequent class.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.3
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
85.71
Percentage of numeric attributes.
14.29
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.87
First quartile of kurtosis among attributes of the numeric type.
0.66
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
0.21
First quartile of skewness among attributes of the numeric type.
0.57
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.64
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.69
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.62
Second quartile (Median) of skewness among attributes of the numeric type.
0.92
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0.11
Third quartile of kurtosis among attributes of the numeric type.
1656.11
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.77
Third quartile of skewness among attributes of the numeric type.
958.17
Third quartile of standard deviation of attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.29
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.29
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.29
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.33
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.33
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.33
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.33
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

72 tasks

21769 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
375 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
314 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
305 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
31 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
1 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Leave one out - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: class
314 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
173 runs - estimation_procedure: 10 times 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
25 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
1307 runs - target_feature: class
1304 runs - target_feature: class
1303 runs - target_feature: class
1303 runs - target_feature: class
1302 runs - target_feature: class
1302 runs - target_feature: class
1302 runs - target_feature: class
1301 runs - target_feature: class
1300 runs - target_feature: class
1299 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
Define a new task