DEVELOPMENT... OpenML
Data
seeds

seeds

active ARFF Publicly available Visibility: public Uploaded 25-05-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • mf_less_than_80 study_123 study_50 study_7 study_236
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik, S. Zak Source: UCI Please cite: Contributors gratefully acknowledge support of their work by the Institute of Agrophysics of the Polish Academy of Sciences in Lublin. * Title: seeds Data Set * Abstract: Measurements of geometrical properties of kernels belonging to three different varieties of wheat. A soft X-ray technique and GRAINS package were used to construct all seven, real-valued attributes. * Source: Małgorzata Charytanowicz, Jerzy Niewczas Institute of Mathematics and Computer Science, The John Paul II Catholic University of Lublin, Konstantynów 1 H, PL 20-708 Lublin, Poland e-mail: {mchmat,jniewczas}@kul.lublin.pl Piotr Kulczycki, Piotr A. Kowalski, Szymon Lukasik, Slawomir Zak Department of Automatic Control and Information Technology, Cracow University of Technology, Warszawska 24, PL 31-155 Cracow, Poland and Systems Research Institute, Polish Academy of Sciences, Newelska 6, PL 01-447 Warsaw, Poland e-mail: {kulczycki,pakowal,slukasik,slzak}@ibspan.waw.pl * Data Set Information: The examined group comprised kernels belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected for the experiment. High quality visualization of the internal kernel structure was detected using a soft X-ray technique. It is non-destructive and considerably cheaper than other more sophisticated imaging techniques like scanning microscopy or laser technology. The images were recorded on 13x18 cm X-ray KODAK plates. Studies were conducted using combine harvested wheat grain originating from experimental fields, explored at the Institute of Agrophysics of the Polish Academy of Sciences in Lublin. The data set can be used for the tasks of classification and cluster analysis. * Attribute Information: To construct the data, seven geometric parameters of wheat kernels were measured: 1. area A, 2. perimeter P, 3. compactness C = 4*pi*A/P^2, 4. length of kernel, 5. width of kernel, 6. asymmetry coefficient 7. length of kernel groove. All of these parameters were real-valued continuous. * Relevant Papers: M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik, S. Zak, 'A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images', in: Information Technologies in Biomedicine, Ewa Pietka, Jacek Kawa (eds.), Springer-Verlag, Berlin-Heidelberg, 2010, pp. 15-24.

8 features

Class (target)nominal3 unique values
0 missing
V1numeric193 unique values
0 missing
V2numeric170 unique values
0 missing
V3numeric186 unique values
0 missing
V4numeric188 unique values
0 missing
V5numeric184 unique values
0 missing
V6numeric207 unique values
0 missing
V7numeric148 unique values
0 missing

107 properties

210
Number of instances (rows) of the dataset.
8
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
7
Number of numeric attributes.
1
Number of nominal attributes.
0.99
Average class difference between consecutive instances.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.58
Entropy of the target attribute values.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.35
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.47
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.04
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
33.33
Percentage of instances belonging to the most frequent class.
70
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-0.07
Maximum kurtosis among attributes of the numeric type.
14.85
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
3
The maximum number of distinct values among attributes of the nominal type.
0.56
Maximum skewness among attributes of the numeric type.
2.91
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.73
Mean kurtosis among attributes of the numeric type.
6.9
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
3
Average number of distinct values among the attributes of the nominal type.
0.27
Mean skewness among attributes of the numeric type.
1.01
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.11
Minimum kurtosis among attributes of the numeric type.
0.87
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
3
The minimal number of distinct values among attributes of the nominal type.
-0.54
Minimum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
33.33
Percentage of instances belonging to the least frequent class.
70
Number of instances belonging to the least frequent class.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
87.5
Percentage of numeric attributes.
12.5
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.1
First quartile of kurtosis among attributes of the numeric type.
3.26
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
0.13
First quartile of skewness among attributes of the numeric type.
0.38
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.84
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.41
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.4
Second quartile (Median) of skewness among attributes of the numeric type.
0.49
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-0.14
Third quartile of kurtosis among attributes of the numeric type.
14.56
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.53
Third quartile of skewness among attributes of the numeric type.
1.5
Third quartile of standard deviation of attributes of the numeric type.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.05
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.93
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

13 tasks

159 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task