DEVELOPMENT... { "data_id": "1496", "name": "ringnorm", "exact_name": "ringnorm", "version": 1, "version_label": null, "description": "**Author**: Michael Revow \n**Source**: http:\/\/www.cs.toronto.edu\/~delve\/data\/ringnorm\/desc.html \n**Please cite**: \n\n1: Abstract: \n\nThis is a 20 dimensional, 2 class classification problem. Each class is drawn from a multivariate normal distribution. Class 1 has mean zero and covariance 4 times the identity. Class 2 has mean (a,a,..a) and unit covariance. a = 2\/sqrt(20). \n\n2: Data set description.\n\nThis is an implementation of Leo Breiman's ringnorm example[1]. It is a 20 dimensional, 2 class classification example. Each class is drawn from a multivariate normal distribution. Class 1 has mean zero and covariance 4 times the identity. Class 2 has mean (a,a,..a) and unit covariance. a = 2\/sqrt(20). Breiman reports the theoretical expected misclassification rate as 1.3%. He used 300 training examples with CART and found an error of 21.4%.\n\n\n- Type. Classification \n- Origin. Laboratory\n- Instances. 7400\n- Features. 20\n- Classes. 2 \n- Missing values. No\n\n3: Attributes information\n\n@relation ring\n@attribute A1 real [-6879.0, 6285.0]\n@attribute A2 real [-7141.0, 6921.0]\n@attribute A3 real [-7734.0, 7611.0]\n@attribute A4 real [-6627.0, 7149.0]\n@attribute A5 real [-7184.0, 6383.0]\n@attribute A6 real [-6946.0, 6743.0]\n@attribute A7 real [-7781.0, 6285.0]\n@attribute A8 real [-6882.0, 6357.0]\n@attribute A9 real [-7184.0, 7487.0]\n@attribute A10 real [-7232.0, 6757.0]\n@attribute A11 real [-7803.0, 7208.0]\n@attribute A12 real [-7395.0, 6791.0]\n@attribute A13 real [-7096.0, 6403.0]\n@attribute A14 real [-7472.0, 7261.0]\n@attribute A15 real [-7342.0, 7372.0]\n@attribute A16 real [-7121.0, 6905.0]\n@attribute A17 real [-7163.0, 7175.0]\n@attribute A18 real [-8778.0, 6896.0]\n@attribute A19 real [-7554.0, 5726.0]\n@attribute A20 real [-6722.0, 7627.0]\n@attribute Class {0, 1}\n@inputs A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20\n@outputs Class\n\n", "format": "ARFF", "uploader": "unknown", "uploader_id": 64, "visibility": "public", "creator": null, "contributor": null, "date": "2015-05-25 21:28:19", "update_comment": null, "last_update": "2015-11-09 20:20:24", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/1592288\/phpWfYmlu", "default_target_attribute": "Class", "row_id_attribute": null, "ignore_attribute": null, "runs": 120, "suggest": { "input": [ "ringnorm", "1: Abstract: This is a 20 dimensional, 2 class classification problem. Each class is drawn from a multivariate normal distribution. Class 1 has mean zero and covariance 4 times the identity. Class 2 has mean (a,a,..a) and unit covariance. a = 2\/sqrt(20). 2: Data set description. This is an implementation of Leo Breiman's ringnorm example[1]. It is a 20 dimensional, 2 class classification example. Each class is drawn from a multivariate normal distribution. Class 1 has mean zero and covariance 4 " ], "weight": 5 }, "qualities": { "NumberOfInstances": 7400, "NumberOfFeatures": 21, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 20, "NumberOfSymbolicFeatures": 1, "AutoCorrelation": 0.4983105825111502, "CfsSubsetEval_DecisionStumpAUC": 0.8762813850018235, "CfsSubsetEval_DecisionStumpErrRate": 0.11567567567567567, "CfsSubsetEval_DecisionStumpKappa": 0.7685817080762587, "CfsSubsetEval_NaiveBayesAUC": 0.8762813850018235, "CfsSubsetEval_NaiveBayesErrRate": 0.11567567567567567, "CfsSubsetEval_NaiveBayesKappa": 0.7685817080762587, "CfsSubsetEval_kNN1NAUC": 0.8762813850018235, "CfsSubsetEval_kNN1NErrRate": 0.11567567567567567, "CfsSubsetEval_kNN1NKappa": 0.7685817080762587, "ClassEntropy": 0.9999317106546881, "DecisionStumpAUC": 0.5908869093816334, "DecisionStumpErrRate": 0.4072972972972973, "DecisionStumpKappa": 0.17914991617639536, "Dimensionality": 0.002837837837837838, "EquivalentNumberOfAtts": null, "J48.00001.AUC": 0.8762813850018235, "J48.00001.ErrRate": 0.11567567567567567, "J48.00001.Kappa": 0.7685817080762587, "J48.0001.AUC": 0.8762813850018235, "J48.0001.ErrRate": 0.11567567567567567, "J48.0001.Kappa": 0.7685817080762587, "J48.001.AUC": 0.8762813850018235, "J48.001.ErrRate": 0.11567567567567567, "J48.001.Kappa": 0.7685817080762587, "MajorityClassPercentage": 50.486486486486484, "MajorityClassSize": 3736, "MaxAttributeEntropy": null, "MaxKurtosisOfNumericAtts": 1.714405525037344, "MaxMeansOfNumericAtts": 225.82229729729698, "MaxMutualInformation": null, "MaxNominalAttDistinctValues": 2, "MaxSkewnessOfNumericAtts": -0.12182524123703703, "MaxStdDevOfNumericAtts": 1542.9250289996091, "MeanAttributeEntropy": null, "MeanKurtosisOfNumericAtts": 1.5057733485938525, "MeanMeansOfNumericAtts": 204.23425000000032, "MeanMutualInformation": null, "MeanNoiseToSignalRatio": null, "MeanNominalAttDistinctValues": 2, "MeanSkewnessOfNumericAtts": -0.23381089497140278, "MeanStdDevOfNumericAtts": 1503.282562109732, "MinAttributeEntropy": null, "MinKurtosisOfNumericAtts": 1.3155491270314177, "MinMeansOfNumericAtts": 176.5491891891896, "MinMutualInformation": null, "MinNominalAttDistinctValues": 2, "MinSkewnessOfNumericAtts": -0.3115874555709903, "MinStdDevOfNumericAtts": 1471.2642656867945, "MinorityClassPercentage": 49.513513513513516, "MinorityClassSize": 3664, "NaiveBayesAUC": 0.99755798649748, "NaiveBayesErrRate": 0.02, "NaiveBayesKappa": 0.9599894786064999, "NumberOfBinaryFeatures": 1, "PercentageOfBinaryFeatures": 4.761904761904762, "PercentageOfInstancesWithMissingValues": 0, "PercentageOfMissingValues": 0, "PercentageOfNumericFeatures": 95.23809523809523, "PercentageOfSymbolicFeatures": 4.761904761904762, "Quartile1AttributeEntropy": null, "Quartile1KurtosisOfNumericAtts": 1.414452320591321, "Quartile1MeansOfNumericAtts": 191.25023648648659, "Quartile1MutualInformation": null, "Quartile1SkewnessOfNumericAtts": -0.25926009116295895, "Quartile1StdDevOfNumericAtts": 1485.8356956981434, "Quartile2AttributeEntropy": null, "Quartile2KurtosisOfNumericAtts": 1.5105284744785332, "Quartile2MeansOfNumericAtts": 201.98371621621735, "Quartile2MutualInformation": null, "Quartile2SkewnessOfNumericAtts": -0.2418017228119591, "Quartile2StdDevOfNumericAtts": 1501.4307717894255, "Quartile3AttributeEntropy": null, "Quartile3KurtosisOfNumericAtts": 1.5975473898930779, "Quartile3MeansOfNumericAtts": 219.66618243243212, "Quartile3MutualInformation": null, "Quartile3SkewnessOfNumericAtts": -0.21530032528641155, "Quartile3StdDevOfNumericAtts": 1518.9831423203589, "REPTreeDepth1AUC": 0.9170463105930262, "REPTreeDepth1ErrRate": 0.13851351351351351, "REPTreeDepth1Kappa": 0.7230013810124952, "REPTreeDepth2AUC": 0.9170463105930262, "REPTreeDepth2ErrRate": 0.13851351351351351, "REPTreeDepth2Kappa": 0.7230013810124952, "REPTreeDepth3AUC": 0.9170463105930262, "REPTreeDepth3ErrRate": 0.13851351351351351, "REPTreeDepth3Kappa": 0.7230013810124952, "RandomTreeDepth1AUC": 0.8848618539782876, "RandomTreeDepth1ErrRate": 0.11513513513513514, "RandomTreeDepth1Kappa": 0.7697115623438517, "RandomTreeDepth2AUC": 0.8848618539782876, "RandomTreeDepth2ErrRate": 0.11513513513513514, "RandomTreeDepth2Kappa": 0.7697115623438517, "RandomTreeDepth3AUC": 0.8848618539782876, "RandomTreeDepth3ErrRate": 0.11513513513513514, "RandomTreeDepth3Kappa": 0.7697115623438517, "StdvNominalAttDistinctValues": 0, "kNN1NAUC": 0.73433832742676, "kNN1NErrRate": 0.2631081081081081, "kNN1NKappa": 0.4710589452927557 }, "tags": [ { "tag": "artificial", "uploader": "2" }, { "tag": "study_52", "uploader": "64" }, { "tag": "study_7", "uploader": "64" }, { "tag": "study_236", "uploader": "0" }, { "tag": "study_293", "uploader": "0" } ], "features": [ { "name": "Class", "index": "20", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "1", "2" ], [ [ "3664", "0" ], [ "0", "3736" ] ] ] }, { "name": "V11", "index": "10", "type": "numeric", "distinct": "3786", "missing": "0", "min": "-7803", "max": "7208", "mean": "216", "stdev": "1517" }, { "name": "V20", "index": "19", "type": "numeric", "distinct": "3685", "missing": "0", "min": "-6722", "max": "7627", "mean": "200", "stdev": "1484" }, { "name": "V19", "index": "18", "type": "numeric", "distinct": "3742", "missing": "0", "min": "-7554", "max": "5726", "mean": "197", "stdev": "1471" }, { "name": "V18", "index": "17", "type": "numeric", "distinct": "3787", "missing": "0", "min": "-8778", "max": "6896", "mean": "177", "stdev": "1531" }, { "name": "V17", "index": "16", "type": "numeric", "distinct": "3725", "missing": "0", "min": "-7163", "max": "7175", "mean": "220", "stdev": "1492" }, { "name": "V16", "index": "15", "type": "numeric", "distinct": "3797", "missing": "0", "min": "-7121", "max": "6905", "mean": "206", "stdev": "1523" }, { "name": "V15", "index": "14", "type": "numeric", "distinct": "3745", "missing": "0", "min": "-7342", "max": "7372", "mean": "221", "stdev": "1506" }, { "name": "V14", "index": "13", "type": "numeric", "distinct": "3746", "missing": "0", "min": "-7472", "max": "7261", "mean": "183", "stdev": "1486" }, { "name": "V13", "index": "12", "type": "numeric", "distinct": "3751", "missing": "0", "min": "-7096", "max": "6403", "mean": "195", "stdev": "1512" }, { "name": "V12", "index": "11", "type": "numeric", "distinct": "3756", "missing": "0", "min": "-7395", "max": "6791", "mean": "203", "stdev": "1504" }, { "name": "V1", "index": "0", "type": "numeric", "distinct": "3739", "missing": "0", "min": "-6879", "max": "6285", "mean": "212", "stdev": "1486" }, { "name": "V10", "index": "9", "type": "numeric", "distinct": "3755", "missing": "0", "min": "-7232", "max": "6757", "mean": "224", "stdev": "1484" }, { "name": "V9", "index": "8", "type": "numeric", "distinct": "3765", "missing": "0", "min": "-7184", "max": "7487", "mean": "187", "stdev": "1535" }, { "name": "V8", "index": "7", "type": "numeric", "distinct": "3695", "missing": "0", "min": "-6882", "max": "6357", "mean": "222", "stdev": "1481" }, { "name": "V7", "index": "6", "type": "numeric", "distinct": "3764", "missing": "0", "min": "-7781", "max": "6285", "mean": "201", "stdev": "1520" }, { "name": "V6", "index": "5", "type": "numeric", "distinct": "3774", "missing": "0", "min": "-6946", "max": "6743", "mean": "201", "stdev": "1513" }, { "name": "V5", "index": "4", "type": "numeric", "distinct": "3760", "missing": "0", "min": "-7184", "max": "6383", "mean": "190", "stdev": "1490" }, { "name": "V4", "index": "3", "type": "numeric", "distinct": "3757", "missing": "0", "min": "-6627", "max": "7149", "mean": "220", "stdev": "1490" }, { "name": "V3", "index": "2", "type": "numeric", "distinct": "3807", "missing": "0", "min": "-7734", "max": "7611", "mean": "185", "stdev": "1543" }, { "name": "V2", "index": "1", "type": "numeric", "distinct": "3779", "missing": "0", "min": "-7141", "max": "6921", "mean": "226", "stdev": "1499" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }