DEVELOPMENT... OpenML
Data
PieChart4

PieChart4

deactivated ARFF Publicly available Visibility: public Uploaded 20-05-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Hans Bauer Jesus","Deter Bergman Source: Unknown - Date unknown Please cite: pie chart 4 Deactivated: this is a duplicate of https://www.openml.org/d/1049

38 features

def (target)nominal2 unique values
0 missing
vnumeric120 unique values
0 missing
unumeric1165 unique values
0 missing
znumeric336 unique values
0 missing
aanumeric40 unique values
0 missing
abnumeric1159 unique values
0 missing
acnumeric941 unique values
0 missing
adnumeric74 unique values
0 missing
aenumeric28 unique values
0 missing
afnumeric40 unique values
0 missing
agnumeric89 unique values
0 missing
ahnumeric67 unique values
0 missing
ainumeric184 unique values
0 missing
ajnumeric245 unique values
0 missing
aknumeric71 unique values
0 missing
alnumeric38 unique values
0 missing
amnumeric171 unique values
0 missing
annumeric394 unique values
0 missing
aonumeric116 unique values
0 missing
knumeric31 unique values
0 missing
bnumeric61 unique values
0 missing
cnumeric22 unique values
0 missing
dnumeric36 unique values
0 missing
enumeric57 unique values
0 missing
fnumeric41 unique values
0 missing
gnumeric43 unique values
0 missing
hnumeric70 unique values
0 missing
inumeric23 unique values
0 missing
jnumeric5 unique values
0 missing
anumeric54 unique values
0 missing
lnumeric76 unique values
0 missing
mnumeric105 unique values
0 missing
nnumeric25 unique values
0 missing
onumeric2 unique values
0 missing
pnumeric107 unique values
0 missing
rnumeric8 unique values
0 missing
snumeric1021 unique values
0 missing
tnumeric708 unique values
0 missing

107 properties

1458
Number of instances (rows) of the dataset.
38
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
37
Number of numeric attributes.
1
Number of nominal attributes.
0.78
Average class difference between consecutive instances.
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.12
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Entropy of the target attribute values.
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.12
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.03
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.36
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
87.79
Percentage of instances belonging to the most frequent class.
1280
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
771.63
Maximum kurtosis among attributes of the numeric type.
19505.52
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
25.48
Maximum skewness among attributes of the numeric type.
62600.26
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
105.09
Mean kurtosis among attributes of the numeric type.
583.46
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
6.45
Mean skewness among attributes of the numeric type.
1837.83
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.51
Minimum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.46
Minimum skewness among attributes of the numeric type.
0.12
Minimum standard deviation of attributes of the numeric type.
12.21
Percentage of instances belonging to the least frequent class.
178
Number of instances belonging to the least frequent class.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.17
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.63
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.37
Percentage of numeric attributes.
2.63
Percentage of nominal attributes.
First quartile of entropy among attributes.
9.74
First quartile of kurtosis among attributes of the numeric type.
1.47
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
2.82
First quartile of skewness among attributes of the numeric type.
2.02
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
48.05
Second quartile (Median) of kurtosis among attributes of the numeric type.
7
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
5.71
Second quartile (Median) of skewness among attributes of the numeric type.
9.49
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
173.88
Third quartile of kurtosis among attributes of the numeric type.
19.71
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
9.49
Third quartile of skewness among attributes of the numeric type.
26.37
Third quartile of standard deviation of attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.12
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.11
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.15
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

12 tasks

112 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: def
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task