DEVELOPMENT... OpenML
Data
PieChart1

PieChart1

active ARFF Publicly available Visibility: public Uploaded 20-05-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • origin_unknown study_52 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Hans Bauer Jesus","Deter Bergman Source: Unknown - Date unknown Please cite: pie chart 1

38 features

def (target)nominal2 unique values
0 missing
vnumeric122 unique values
0 missing
unumeric690 unique values
0 missing
znumeric294 unique values
0 missing
aanumeric28 unique values
0 missing
abnumeric688 unique values
0 missing
acnumeric625 unique values
0 missing
adnumeric71 unique values
0 missing
aenumeric40 unique values
0 missing
afnumeric58 unique values
0 missing
agnumeric88 unique values
0 missing
ahnumeric66 unique values
0 missing
ainumeric194 unique values
0 missing
ajnumeric222 unique values
0 missing
aknumeric101 unique values
0 missing
alnumeric42 unique values
0 missing
amnumeric154 unique values
0 missing
annumeric248 unique values
0 missing
aonumeric109 unique values
0 missing
knumeric30 unique values
0 missing
bnumeric58 unique values
0 missing
cnumeric23 unique values
0 missing
dnumeric24 unique values
0 missing
enumeric53 unique values
0 missing
fnumeric58 unique values
0 missing
gnumeric47 unique values
0 missing
hnumeric69 unique values
0 missing
inumeric38 unique values
0 missing
jnumeric43 unique values
0 missing
anumeric52 unique values
0 missing
lnumeric72 unique values
0 missing
mnumeric106 unique values
0 missing
nnumeric26 unique values
0 missing
onumeric57 unique values
0 missing
pnumeric110 unique values
0 missing
rnumeric7 unique values
0 missing
snumeric654 unique values
0 missing
tnumeric527 unique values
0 missing

107 properties

705
Number of instances (rows) of the dataset.
38
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
37
Number of numeric attributes.
1
Number of nominal attributes.
0.84
Average class difference between consecutive instances.
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.78
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.42
Entropy of the target attribute values.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.05
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
91.35
Percentage of instances belonging to the most frequent class.
644
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
264.2
Maximum kurtosis among attributes of the numeric type.
43415.68
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
14.92
Maximum skewness among attributes of the numeric type.
212518.87
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
56.5
Mean kurtosis among attributes of the numeric type.
1283.64
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
5.35
Mean skewness among attributes of the numeric type.
6136.71
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.21
Minimum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.06
Minimum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
8.65
Percentage of instances belonging to the least frequent class.
61
Number of instances belonging to the least frequent class.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.14
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.23
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.63
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.37
Percentage of numeric attributes.
2.63
Percentage of nominal attributes.
First quartile of entropy among attributes.
15.24
First quartile of kurtosis among attributes of the numeric type.
1.77
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
2.75
First quartile of skewness among attributes of the numeric type.
2.39
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
42.8
Second quartile (Median) of kurtosis among attributes of the numeric type.
11.03
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
5.27
Second quartile (Median) of skewness among attributes of the numeric type.
15.25
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
77.22
Third quartile of kurtosis among attributes of the numeric type.
30.72
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
6.83
Third quartile of skewness among attributes of the numeric type.
40.25
Third quartile of standard deviation of attributes of the numeric type.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.11
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

13 tasks

102 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: def
0 runs - estimation_procedure: 33% Holdout set - target_feature: def
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task