DEVELOPMENT... OpenML
Data
CastMetal1

CastMetal1

active ARFF Publicly available Visibility: public Uploaded 20-05-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • mf_less_than_80 study_123 study_52 study_7 study_88
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Hans Bauer Jesus","Deter Bergman Source: Unknown - Date unknown Please cite: cast metal 1

38 features

def (target)nominal2 unique values
0 missing
vnumeric104 unique values
0 missing
unumeric325 unique values
0 missing
znumeric210 unique values
0 missing
aanumeric25 unique values
0 missing
abnumeric325 unique values
0 missing
acnumeric312 unique values
0 missing
adnumeric52 unique values
0 missing
aenumeric27 unique values
0 missing
afnumeric45 unique values
0 missing
agnumeric73 unique values
0 missing
ahnumeric29 unique values
0 missing
ainumeric148 unique values
0 missing
ajnumeric173 unique values
0 missing
aknumeric92 unique values
0 missing
alnumeric42 unique values
0 missing
amnumeric144 unique values
0 missing
annumeric227 unique values
0 missing
aonumeric103 unique values
0 missing
knumeric28 unique values
0 missing
bnumeric40 unique values
0 missing
cnumeric20 unique values
0 missing
dnumeric35 unique values
0 missing
enumeric67 unique values
0 missing
fnumeric45 unique values
0 missing
gnumeric31 unique values
0 missing
hnumeric31 unique values
0 missing
inumeric27 unique values
0 missing
jnumeric36 unique values
0 missing
anumeric59 unique values
0 missing
lnumeric54 unique values
0 missing
mnumeric83 unique values
0 missing
nnumeric17 unique values
0 missing
onumeric36 unique values
0 missing
pnumeric98 unique values
0 missing
rnumeric11 unique values
0 missing
snumeric313 unique values
0 missing
tnumeric284 unique values
0 missing

107 properties

327
Number of instances (rows) of the dataset.
38
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
37
Number of numeric attributes.
1
Number of nominal attributes.
0.77
Average class difference between consecutive instances.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Entropy of the target attribute values.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.13
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.12
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
87.16
Percentage of instances belonging to the most frequent class.
285
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
104.33
Maximum kurtosis among attributes of the numeric type.
49208.27
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
9.25
Maximum skewness among attributes of the numeric type.
160345.25
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
22.63
Mean kurtosis among attributes of the numeric type.
1462.39
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
3.57
Mean skewness among attributes of the numeric type.
4655.67
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.08
Minimum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.45
Minimum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
12.84
Percentage of instances belonging to the least frequent class.
42
Number of instances belonging to the least frequent class.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.22
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.63
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.37
Percentage of numeric attributes.
2.63
Percentage of nominal attributes.
First quartile of entropy among attributes.
9.44
First quartile of kurtosis among attributes of the numeric type.
2.6
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
2.44
First quartile of skewness among attributes of the numeric type.
2.93
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
17.62
Second quartile (Median) of kurtosis among attributes of the numeric type.
16.77
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
3.53
Second quartile (Median) of skewness among attributes of the numeric type.
15.1
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
27.7
Third quartile of kurtosis among attributes of the numeric type.
44.02
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.35
Third quartile of skewness among attributes of the numeric type.
45.31
Third quartile of standard deviation of attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.22
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.22
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.22
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.51
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.23
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

13 tasks

111 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: def
0 runs - estimation_procedure: 33% Holdout set - target_feature: def
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task