DEVELOPMENT... OpenML
Data
KungChi3

KungChi3

active ARFF Publicly available Visibility: public Uploaded 19-05-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Hans Bauer Jesus","Deter Bergman Source: Unknown - Date unknown Please cite: Kung chi

40 features

def (target)nominal2 unique values
0 missing
znumeric122 unique values
0 missing
vnumeric108 unique values
0 missing
aanumeric52 unique values
0 missing
abnumeric95 unique values
0 missing
acnumeric19 unique values
0 missing
adnumeric122 unique values
0 missing
aenumeric121 unique values
0 missing
afnumeric28 unique values
0 missing
agnumeric13 unique values
0 missing
ahnumeric21 unique values
0 missing
ainumeric51 unique values
0 missing
ajnumeric29 unique values
0 missing
aknumeric70 unique values
0 missing
alnumeric83 unique values
0 missing
amnumeric48 unique values
0 missing
annumeric20 unique values
0 missing
aonumeric56 unique values
0 missing
apnumeric41 unique values
0 missing
arnumeric51 unique values
0 missing
knumeric16 unique values
0 missing
bnumeric23 unique values
0 missing
cnumeric27 unique values
0 missing
dnumeric3 unique values
0 missing
enumeric12 unique values
0 missing
fnumeric21 unique values
0 missing
gnumeric15 unique values
0 missing
hnumeric27 unique values
0 missing
inumeric13 unique values
0 missing
jnumeric12 unique values
0 missing
anumeric20 unique values
0 missing
lnumeric18 unique values
0 missing
mnumeric56 unique values
0 missing
nnumeric9 unique values
0 missing
onumeric16 unique values
0 missing
pnumeric49 unique values
0 missing
rnumeric4 unique values
0 missing
snumeric16 unique values
0 missing
tnumeric19 unique values
0 missing
unumeric122 unique values
0 missing

107 properties

123
Number of instances (rows) of the dataset.
40
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
39
Number of numeric attributes.
1
Number of nominal attributes.
0.81
Average class difference between consecutive instances.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.12
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.16
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Entropy of the target attribute values.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.12
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.33
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.29
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.29
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.29
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
86.99
Percentage of instances belonging to the most frequent class.
107
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
15.63
Maximum kurtosis among attributes of the numeric type.
20366.84
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
3.73
Maximum skewness among attributes of the numeric type.
38139.59
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
6.13
Mean kurtosis among attributes of the numeric type.
589.03
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
2.06
Mean skewness among attributes of the numeric type.
1072.55
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.75
Minimum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-1.57
Minimum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
13.01
Percentage of instances belonging to the least frequent class.
16
Number of instances belonging to the least frequent class.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.18
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.5
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.5
Percentage of numeric attributes.
2.5
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.33
First quartile of kurtosis among attributes of the numeric type.
0.9
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
1.61
First quartile of skewness among attributes of the numeric type.
0.34
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
6.19
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.53
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
2.32
Second quartile (Median) of skewness among attributes of the numeric type.
5.66
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
8.82
Third quartile of kurtosis among attributes of the numeric type.
27.59
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.69
Third quartile of skewness among attributes of the numeric type.
25.02
Third quartile of standard deviation of attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.13
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
-0.07
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.44
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
-0.07
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.11
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

12 tasks

1 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: matthews_correlation_coefficient - target_feature: def
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task