DEVELOPMENT... OpenML
Data
BNG(autos,5000,10)

BNG(autos,5000,10)

active ARFF public domain Visibility: public Uploaded 23-02-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

26 features

symboling (target)nominal7 unique values
0 missing
engine-typenominal7 unique values
0 missing
pricenumeric999967 unique values
0 missing
highway-mpgnumeric976781 unique values
0 missing
city-mpgnumeric972420 unique values
0 missing
peak-rpmnumeric999466 unique values
0 missing
horsepowernumeric994846 unique values
0 missing
compression-rationumeric681060 unique values
0 missing
strokenumeric610010 unique values
0 missing
borenumeric622278 unique values
0 missing
fuel-systemnominal8 unique values
0 missing
engine-sizenumeric994407 unique values
0 missing
num-of-cylindersnominal7 unique values
0 missing
normalized-lossesnumeric994686 unique values
0 missing
curb-weightnumeric999729 unique values
0 missing
heightnumeric942812 unique values
0 missing
widthnumeric925509 unique values
0 missing
lengthnumeric986110 unique values
0 missing
wheel-basenumeric966988 unique values
0 missing
engine-locationnominal2 unique values
0 missing
drive-wheelsnominal3 unique values
0 missing
body-stylenominal5 unique values
0 missing
num-of-doorsnominal2 unique values
0 missing
aspirationnominal2 unique values
0 missing
fuel-typenominal2 unique values
0 missing
makenominal22 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
26
Number of attributes (columns) of the dataset.
7
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
15
Number of numeric attributes.
11
Number of nominal attributes.
0.23
Average class difference between consecutive instances.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.55
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
2.3
Entropy of the target attribute values.
0.54
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.68
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
73.71
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.51
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.51
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.51
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
32.36
Percentage of instances belonging to the most frequent class.
323554
Number of instances belonging to the most frequent class.
4.43
Maximum entropy among attributes.
7.42
Maximum kurtosis among attributes of the numeric type.
13474.8
Maximum of means among attributes of the numeric type.
0.08
Maximum mutual information between the nominal attributes and the target attribute.
22
The maximum number of distinct values among attributes of the nominal type.
2.55
Maximum skewness among attributes of the numeric type.
8024.06
Maximum standard deviation of attributes of the numeric type.
1.92
Average entropy of the attributes.
0.84
Mean kurtosis among attributes of the numeric type.
1465.28
Mean of means among attributes of the numeric type.
0.03
Average mutual information between the nominal attributes and the target attribute.
60.52
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
6.09
Average number of distinct values among the attributes of the nominal type.
0.75
Mean skewness among attributes of the numeric type.
616.25
Mean standard deviation of attributes of the numeric type.
0.53
Minimal entropy among attributes.
-0.98
Minimum kurtosis among attributes of the numeric type.
3.25
Minimum of means among attributes of the numeric type.
0.01
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.58
Minimum skewness among attributes of the numeric type.
0.27
Minimum standard deviation of attributes of the numeric type.
0.24
Percentage of instances belonging to the least frequent class.
2441
Number of instances belonging to the least frequent class.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.54
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
4
Number of binary attributes.
15.38
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
57.69
Percentage of numeric attributes.
42.31
Percentage of nominal attributes.
0.86
First quartile of entropy among attributes.
-0.25
First quartile of kurtosis among attributes of the numeric type.
24.27
First quartile of means among attributes of the numeric type.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.1
First quartile of skewness among attributes of the numeric type.
2.46
First quartile of standard deviation of attributes of the numeric type.
1.82
Second quartile (Median) of entropy among attributes.
0.09
Second quartile (Median) of kurtosis among attributes of the numeric type.
98.94
Second quartile (Median) of means among attributes of the numeric type.
0.03
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.66
Second quartile (Median) of skewness among attributes of the numeric type.
6.72
Second quartile (Median) of standard deviation of attributes of the numeric type.
2.7
Third quartile of entropy among attributes.
1.04
Third quartile of kurtosis among attributes of the numeric type.
174.89
Third quartile of means among attributes of the numeric type.
0.05
Third quartile of mutual information between the nominal attributes and the target attribute.
1.22
Third quartile of skewness among attributes of the numeric type.
40.56
Third quartile of standard deviation of attributes of the numeric type.
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.51
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.6
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.6
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.6
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
5.8
Standard deviation of the number of distinct values among attributes of the nominal type.
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.56
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

13 tasks

0 runs - estimation_procedure: 33% Holdout set - target_feature: symboling
27 runs - estimation_procedure: Interleaved Test then Train - target_feature: symboling
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task