DEVELOPMENT... OpenML
Data
BNG(kr-vs-kp,10000,10)

BNG(kr-vs-kp,10000,10)

active ARFF public domain Visibility: public Uploaded 22-02-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

37 features

class (target)nominal2 unique values
0 missing
reskrnominal2 unique values
0 missing
reskdnominal2 unique values
0 missing
rimmxnominal2 unique values
0 missing
rkxwpnominal2 unique values
0 missing
rxmsqnominal2 unique values
0 missing
simplnominal2 unique values
0 missing
skachnominal2 unique values
0 missing
skewrnominal2 unique values
0 missing
skrxpnominal2 unique values
0 missing
spcopnominal2 unique values
0 missing
stlmtnominal2 unique values
0 missing
thrsknominal2 unique values
0 missing
wkctinominal2 unique values
0 missing
wkna8nominal2 unique values
0 missing
wkncknominal2 unique values
0 missing
wkovlnominal2 unique values
0 missing
wkposnominal2 unique values
0 missing
wtoegnominal3 unique values
0 missing
bxqsqnominal2 unique values
0 missing
bknwynominal2 unique values
0 missing
bkon8nominal2 unique values
0 missing
bkonanominal2 unique values
0 missing
bksprnominal2 unique values
0 missing
bkxbqnominal2 unique values
0 missing
bkxcrnominal2 unique values
0 missing
bkxwpnominal2 unique values
0 missing
blxwpnominal2 unique values
0 missing
bkblknominal2 unique values
0 missing
cntxtnominal2 unique values
0 missing
dsoppnominal2 unique values
0 missing
dwipdnominal2 unique values
0 missing
hdchknominal2 unique values
0 missing
katrinominal3 unique values
0 missing
mulchnominal2 unique values
0 missing
qxmsqnominal2 unique values
0 missing
r2ar8nominal2 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
37
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
37
Number of nominal attributes.
0.5
Average class difference between consecutive instances.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Entropy of the target attribute values.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.35
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
75.03
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.05
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
52.19
Percentage of instances belonging to the most frequent class.
521875
Number of instances belonging to the most frequent class.
1.33
Maximum entropy among attributes.
Maximum kurtosis among attributes of the numeric type.
Maximum of means among attributes of the numeric type.
0.16
Maximum mutual information between the nominal attributes and the target attribute.
3
The maximum number of distinct values among attributes of the nominal type.
Maximum skewness among attributes of the numeric type.
Maximum standard deviation of attributes of the numeric type.
0.75
Average entropy of the attributes.
Mean kurtosis among attributes of the numeric type.
Mean of means among attributes of the numeric type.
0.01
Average mutual information between the nominal attributes and the target attribute.
55.04
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2.05
Average number of distinct values among the attributes of the nominal type.
Mean skewness among attributes of the numeric type.
Mean standard deviation of attributes of the numeric type.
0.01
Minimal entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
47.81
Percentage of instances belonging to the least frequent class.
478125
Number of instances belonging to the least frequent class.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.23
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
35
Number of binary attributes.
94.59
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0
Percentage of numeric attributes.
100
Percentage of nominal attributes.
0.58
First quartile of entropy among attributes.
First quartile of kurtosis among attributes of the numeric type.
First quartile of means among attributes of the numeric type.
0
First quartile of mutual information between the nominal attributes and the target attribute.
First quartile of skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
0.84
Second quartile (Median) of entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.96
Third quartile of entropy among attributes.
Third quartile of kurtosis among attributes of the numeric type.
Third quartile of means among attributes of the numeric type.
0.01
Third quartile of mutual information between the nominal attributes and the target attribute.
Third quartile of skewness among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.05
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.05
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.05
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.86
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.23
Standard deviation of the number of distinct values among attributes of the nominal type.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.05
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

22 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
29 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task