DEVELOPMENT... OpenML
Data
BNG(anneal.ORIG,10000,5)

BNG(anneal.ORIG,10000,5)

active ARFF public domain Visibility: public Uploaded 22-02-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

39 features

class (target)nominal6 unique values
0 missing
phosnominal1 unique values
0 missing
chromnominal1 unique values
0 missing
cbondnominal1 unique values
0 missing
marvinominal1 unique values
0 missing
exptlnominal1 unique values
0 missing
ferronominal1 unique values
0 missing
corrnominal1 unique values
0 missing
blue%2Fbright%2Fvarn%2Fcleannominal4 unique values
0 missing
lustrenominal1 unique values
0 missing
jurofmnominal1 unique values
0 missing
snominal1 unique values
0 missing
pnominal1 unique values
0 missing
shapenominal2 unique values
0 missing
thicknumeric732215 unique values
0 missing
widthnumeric593569 unique values
0 missing
lennumeric215893 unique values
0 missing
oilnominal2 unique values
0 missing
borenominal4 unique values
0 missing
packingnominal3 unique values
0 missing
surface-finishnominal2 unique values
0 missing
product-typenominal3 unique values
0 missing
steelnominal8 unique values
0 missing
carbonnumeric186024 unique values
0 missing
hardnessnumeric167245 unique values
0 missing
temper_rollingnominal1 unique values
0 missing
conditionnominal3 unique values
0 missing
formabilitynominal5 unique values
0 missing
strengthnumeric246047 unique values
0 missing
non-ageingnominal1 unique values
0 missing
familynominal9 unique values
0 missing
surface-qualitynominal4 unique values
0 missing
enamelabilitynominal5 unique values
0 missing
bcnominal1 unique values
0 missing
bfnominal1 unique values
0 missing
btnominal1 unique values
0 missing
bw%2Fmenominal2 unique values
0 missing
blnominal1 unique values
0 missing
mnominal1 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
39
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
6
Number of numeric attributes.
33
Number of nominal attributes.
0.6
Average class difference between consecutive instances.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.57
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.57
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.15
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.57
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.2
Entropy of the target attribute values.
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.24
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
53.33
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
75.97
Percentage of instances belonging to the most frequent class.
759652
Number of instances belonging to the most frequent class.
2.28
Maximum entropy among attributes.
1.65
Maximum kurtosis among attributes of the numeric type.
1040.42
Maximum of means among attributes of the numeric type.
0.16
Maximum mutual information between the nominal attributes and the target attribute.
9
The maximum number of distinct values among attributes of the nominal type.
1.85
Maximum skewness among attributes of the numeric type.
1733.23
Maximum standard deviation of attributes of the numeric type.
0.47
Average entropy of the attributes.
0.23
Mean kurtosis among attributes of the numeric type.
334.65
Mean of means among attributes of the numeric type.
0.02
Average mutual information between the nominal attributes and the target attribute.
19.93
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2.42
Average number of distinct values among the attributes of the nominal type.
1.13
Mean skewness among attributes of the numeric type.
402.4
Mean standard deviation of attributes of the numeric type.
-0
Minimal entropy among attributes.
-0.87
Minimum kurtosis among attributes of the numeric type.
1.23
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
1
The minimal number of distinct values among attributes of the nominal type.
0.07
Minimum skewness among attributes of the numeric type.
0.89
Minimum standard deviation of attributes of the numeric type.
0.06
Percentage of instances belonging to the least frequent class.
555
Number of instances belonging to the least frequent class.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.22
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.46
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
4
Number of binary attributes.
10.26
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
15.38
Percentage of numeric attributes.
84.62
Percentage of nominal attributes.
0
First quartile of entropy among attributes.
-0.81
First quartile of kurtosis among attributes of the numeric type.
7.98
First quartile of means among attributes of the numeric type.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.69
First quartile of skewness among attributes of the numeric type.
16.59
First quartile of standard deviation of attributes of the numeric type.
0
Second quartile (Median) of entropy among attributes.
0.04
Second quartile (Median) of kurtosis among attributes of the numeric type.
85.21
Second quartile (Median) of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.21
Second quartile (Median) of skewness among attributes of the numeric type.
125.19
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.88
Third quartile of entropy among attributes.
1.4
Third quartile of kurtosis among attributes of the numeric type.
849.29
Third quartile of means among attributes of the numeric type.
0.04
Third quartile of mutual information between the nominal attributes and the target attribute.
1.63
Third quartile of skewness among attributes of the numeric type.
739.36
Third quartile of standard deviation of attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.14
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.14
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.14
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
2.14
Standard deviation of the number of distinct values among attributes of the nominal type.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.14
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

22 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
28 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task