DEVELOPMENT... OpenML
Data
lungcancer_shedden

lungcancer_shedden

active ARFF Publicly available Visibility: public Uploaded 19-02-2015 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Kerby Shedden et al. Michel Lang Source: Unknown - Date unknown Please cite: Shedden, K., Taylor, J. M. G., Enkemann, S. A., Tsao, M. S., Yeatman, T. J., Gerald, W. L., … Sharma, A. (2008). Gene Expression-Based Survival Prediction in Lung Adenocarcinoma: A Multi-Site, Blinded Validation Study: Director’s Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma. Nature Medicine, 14(8), 822–827. doi:10.1038/nm.1790 fRMA-normalized. Only "Kratz-genes"*. \* (see: A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies Kratz, Johannes R et al. The Lancet , Volume 379 , Issue 9818 , 823 - 832)

24 features

OS_years (target)numeric332 unique values
0 missing
g_202454_s_atnumeric442 unique values
0 missing
g_AFFX.HUMGAPDH.M33197_M_atnumeric442 unique values
0 missing
g_AFFX.HUMGAPDH.M33197_5_atnumeric442 unique values
0 missing
g_204979_s_atnumeric442 unique values
0 missing
g_212724_atnumeric442 unique values
0 missing
g_204891_s_atnumeric442 unique values
0 missing
g_204890_s_atnumeric442 unique values
0 missing
g_206926_s_atnumeric442 unique values
0 missing
g_206924_atnumeric442 unique values
0 missing
g_216010_x_atnumeric442 unique values
0 missing
g_214088_s_atnumeric442 unique values
0 missing
g_215638_atnumeric442 unique values
0 missing
g_201938_atnumeric442 unique values
0 missing
g_203968_s_atnumeric442 unique values
0 missing
g_203967_atnumeric442 unique values
0 missing
g_211851_x_atnumeric442 unique values
0 missing
g_204531_s_atnumeric442 unique values
0 missing
g_211475_s_atnumeric442 unique values
0 missing
g_202387_atnumeric442 unique values
0 missing
sexnominal2 unique values
0 missing
agenumeric50 unique values
0 missing
histologynominal1 unique values
0 missing
OS_eventnominal2 unique values
0 missing

107 properties

442
Number of instances (rows) of the dataset.
24
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
21
Number of numeric attributes.
3
Number of nominal attributes.
-1.98
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.05
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
25.57
Maximum kurtosis among attributes of the numeric type.
64.39
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
4.17
Maximum skewness among attributes of the numeric type.
10.09
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.71
Mean kurtosis among attributes of the numeric type.
10.56
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1.67
Average number of distinct values among the attributes of the nominal type.
0.74
Mean skewness among attributes of the numeric type.
1.08
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.46
Minimum kurtosis among attributes of the numeric type.
4.38
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1
The minimal number of distinct values among attributes of the nominal type.
-0.98
Minimum skewness among attributes of the numeric type.
0.18
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2
Number of binary attributes.
8.33
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
87.5
Percentage of numeric attributes.
12.5
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.15
First quartile of kurtosis among attributes of the numeric type.
6.05
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.02
First quartile of skewness among attributes of the numeric type.
0.36
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.94
Second quartile (Median) of kurtosis among attributes of the numeric type.
7.49
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.64
Second quartile (Median) of skewness among attributes of the numeric type.
0.52
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.93
Third quartile of kurtosis among attributes of the numeric type.
9.49
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.19
Third quartile of skewness among attributes of the numeric type.
0.68
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.58
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

12 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
3 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: c_index
Define a new task