DEVELOPMENT... OpenML
Data
nki70.arff

nki70.arff

active ARFF Publicly available Visibility: public Uploaded 03-12-2014 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

77 features

event (target)numeric2 unique values
0 missing
CDCA7numeric144 unique values
0 missing
RTN4RL1numeric144 unique values
0 missing
RFC4numeric144 unique values
0 missing
ORC6Lnumeric144 unique values
0 missing
PECI.1numeric144 unique values
0 missing
SLC2A3numeric144 unique values
0 missing
GPR126numeric144 unique values
0 missing
FBXO31numeric144 unique values
0 missing
DCKnumeric144 unique values
0 missing
STK32Bnumeric144 unique values
0 missing
DTLnumeric144 unique values
0 missing
COL4A2numeric144 unique values
0 missing
MELKnumeric144 unique values
0 missing
TGFB3numeric144 unique values
0 missing
Contig40831_RCnumeric144 unique values
0 missing
MTDHnumeric144 unique values
0 missing
PECInumeric144 unique values
0 missing
UCHL5numeric144 unique values
0 missing
C20orf46numeric144 unique values
0 missing
NMUnumeric144 unique values
0 missing
timenumeric139 unique values
0 missing
ESM1numeric144 unique values
0 missing
NM_004702numeric144 unique values
0 missing
EGLN1numeric144 unique values
0 missing
CENPAnumeric144 unique values
0 missing
Contig20217_RCnumeric144 unique values
0 missing
PRC1numeric144 unique values
0 missing
LGP2numeric144 unique values
0 missing
PALM2.AKAP2numeric144 unique values
0 missing
LOC643008numeric144 unique values
0 missing
IGFBP5.1numeric144 unique values
0 missing
PITRM1numeric144 unique values
0 missing
HRASLSnumeric144 unique values
0 missing
IGFBP5numeric144 unique values
0 missing
C9orf30numeric144 unique values
0 missing
AP2B1numeric144 unique values
0 missing
MCM6numeric144 unique values
0 missing
MS4A7numeric144 unique values
0 missing
NUSAP1numeric144 unique values
0 missing
RP5.860F19.3numeric144 unique values
0 missing
DIAPH3.2numeric144 unique values
0 missing
BBC3numeric144 unique values
0 missing
Contig32125_RCnumeric144 unique values
0 missing
DIAPH3.1numeric144 unique values
0 missing
FGF18numeric144 unique values
0 missing
QSCN6L1numeric144 unique values
0 missing
ALDH4A1numeric144 unique values
0 missing
AA555029_RCnumeric144 unique values
0 missing
C16orf61numeric144 unique values
0 missing
DIAPH3numeric144 unique values
0 missing
Contig63649_RCnumeric144 unique values
0 missing
TSPYL5numeric144 unique values
0 missing
Agenumeric23 unique values
0 missing
Gradenominal3 unique values
0 missing
ERnominal2 unique values
0 missing
Nnominal2 unique values
0 missing
Diamnominal2 unique values
0 missing
ECT2numeric144 unique values
0 missing
RAB6Bnumeric144 unique values
0 missing
GPR180numeric144 unique values
0 missing
GSTM3numeric144 unique values
0 missing
AYTL2numeric144 unique values
0 missing
SERF1Anumeric144 unique values
0 missing
CDC42BPAnumeric144 unique values
0 missing
WISP1numeric144 unique values
0 missing
KNTC2numeric144 unique values
0 missing
GMPSnumeric144 unique values
0 missing
ZNF533numeric144 unique values
0 missing
Contig35251_RCnumeric144 unique values
0 missing
RUNDC1numeric144 unique values
0 missing
MMP9numeric144 unique values
0 missing
OXCT1numeric144 unique values
0 missing
GNAZnumeric144 unique values
0 missing
FLT1numeric144 unique values
0 missing
EXT1numeric144 unique values
0 missing
SCUBE2numeric144 unique values
0 missing

107 properties

144
Number of instances (rows) of the dataset.
77
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
73
Number of numeric attributes.
4
Number of nominal attributes.
0.51
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.53
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
21.11
Maximum kurtosis among attributes of the numeric type.
44.31
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
3
The maximum number of distinct values among attributes of the nominal type.
1.95
Maximum skewness among attributes of the numeric type.
5.34
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.88
Mean kurtosis among attributes of the numeric type.
0.67
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2.25
Average number of distinct values among the attributes of the nominal type.
0.25
Mean skewness among attributes of the numeric type.
0.34
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.51
Minimum kurtosis among attributes of the numeric type.
-0.32
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.67
Minimum skewness among attributes of the numeric type.
0.13
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3
Number of binary attributes.
3.9
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
94.81
Percentage of numeric attributes.
5.19
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.04
First quartile of kurtosis among attributes of the numeric type.
-0.06
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.1
First quartile of skewness among attributes of the numeric type.
0.17
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.37
Second quartile (Median) of kurtosis among attributes of the numeric type.
-0.03
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.18
Second quartile (Median) of skewness among attributes of the numeric type.
0.2
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.83
Third quartile of kurtosis among attributes of the numeric type.
-0
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.48
Third quartile of skewness among attributes of the numeric type.
0.27
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.5
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

13 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: c_index
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: c_index
Define a new task