DEVELOPMENT... OpenML
Data
BNG(colic.ORIG,nominal,1000000)

BNG(colic.ORIG,nominal,1000000)

active ARFF Publicly available Visibility: public Uploaded 08-04-2014 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

28 features

pathology_cp_data (target)nominal2 unique values
0 missing
nasogastric_refluxnominal3 unique values
0 missing
subtype_of_lesionnominal2 unique values
0 missing
type_of_lesionnominal8 unique values
0 missing
site_of_lesionnominal63 unique values
0 missing
surgical_lesionnominal2 unique values
0 missing
outcomenominal3 unique values
0 missing
abdomcentesis_total_proteinnominal3 unique values
0 missing
abdominocentesis_appearancenominal3 unique values
0 missing
total_proteinnominal3 unique values
0 missing
packed_cell_volumenominal3 unique values
0 missing
abdomennominal5 unique values
0 missing
rectal_examination_-_fecesnominal4 unique values
0 missing
nasogastric_reflux_PHnominal3 unique values
0 missing
surgerynominal2 unique values
0 missing
nasogastric_tubenominal3 unique values
0 missing
abdominal_distensionnominal4 unique values
0 missing
peristalsisnominal4 unique values
0 missing
painnominal5 unique values
0 missing
capillary_refill_timenominal3 unique values
0 missing
mucous_membranesnominal6 unique values
0 missing
peripheral_pulsenominal4 unique values
0 missing
temperature_of_extremitiesnominal4 unique values
0 missing
respiratory_ratenominal3 unique values
0 missing
pulsenominal3 unique values
0 missing
rectal_temperaturenominal3 unique values
0 missing
Hospital_Numbernominal338 unique values
0 missing
Agenominal2 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
28
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
28
Number of nominal attributes.
0.55
Average class difference between consecutive instances.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.92
Entropy of the target attribute values.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.34
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
44.04
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.18
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.18
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.18
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
66.28
Percentage of instances belonging to the most frequent class.
662777
Number of instances belonging to the most frequent class.
8.38
Maximum entropy among attributes.
Maximum kurtosis among attributes of the numeric type.
Maximum of means among attributes of the numeric type.
0.17
Maximum mutual information between the nominal attributes and the target attribute.
338
The maximum number of distinct values among attributes of the nominal type.
Maximum skewness among attributes of the numeric type.
Maximum standard deviation of attributes of the numeric type.
1.58
Average entropy of the attributes.
Mean kurtosis among attributes of the numeric type.
Mean of means among attributes of the numeric type.
0.02
Average mutual information between the nominal attributes and the target attribute.
74.46
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
17.54
Average number of distinct values among the attributes of the nominal type.
Mean skewness among attributes of the numeric type.
Mean standard deviation of attributes of the numeric type.
0.05
Minimal entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
33.72
Percentage of instances belonging to the least frequent class.
337223
Number of instances belonging to the least frequent class.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.17
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.62
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
5
Number of binary attributes.
17.86
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0
Percentage of numeric attributes.
100
Percentage of nominal attributes.
0.89
First quartile of entropy among attributes.
First quartile of kurtosis among attributes of the numeric type.
First quartile of means among attributes of the numeric type.
0
First quartile of mutual information between the nominal attributes and the target attribute.
First quartile of skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
1.1
Second quartile (Median) of entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
Second quartile (Median) of standard deviation of attributes of the numeric type.
1.68
Third quartile of entropy among attributes.
Third quartile of kurtosis among attributes of the numeric type.
Third quartile of means among attributes of the numeric type.
0.02
Third quartile of mutual information between the nominal attributes and the target attribute.
Third quartile of skewness among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.48
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.48
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.22
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.48
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.25
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.25
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.25
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
63.82
Standard deviation of the number of distinct values among attributes of the nominal type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.18
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

17 tasks

22 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: pathology_cp_data
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: pathology_cp_data
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: pathology_cp_data
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: pathology_cp_data
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: pathology_cp_data
48 runs - estimation_procedure: Interleaved Test then Train - target_feature: pathology_cp_data
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task