DEVELOPMENT... OpenML
Data
ar4

ar4

active ARFF Publicly available Visibility: public Uploaded 06-10-2014 by Felicia West
1 likes downloaded by 13 people , 16 total downloads 0 issues 0 downvotes
  • mythbusting_1 PROMISE study_1 study_123 study_15 study_20 study_41 study_52 study_7 study_88 study_236
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite:

30 features

defects (target)nominal2 unique values
0 missing
halstead_errornumeric100 unique values
0 missing
formal_parametersnumeric5 unique values
0 missing
normalized_cyclomatic_complexitynumeric87 unique values
0 missing
design_densitynumeric42 unique values
0 missing
design_complexitynumeric16 unique values
0 missing
decision_densitynumeric16 unique values
0 missing
cyclomatic_densitynumeric68 unique values
0 missing
cyclomatic_complexitynumeric25 unique values
0 missing
multiple_condition_countnumeric15 unique values
0 missing
condition_countnumeric32 unique values
0 missing
call_pairsnumeric16 unique values
0 missing
decision_countnumeric33 unique values
0 missing
branch_countnumeric33 unique values
0 missing
halstead_timenumeric106 unique values
0 missing
total_locnumeric75 unique values
0 missing
halstead_effortnumeric106 unique values
0 missing
halstead_difficultynumeric101 unique values
0 missing
halstead_levelnumeric101 unique values
0 missing
halstead_volumenumeric100 unique values
0 missing
halstead_lengthnumeric91 unique values
0 missing
halstead_vocabularynumeric55 unique values
0 missing
total_operatorsnumeric82 unique values
0 missing
total_operandsnumeric68 unique values
0 missing
unique_operatorsnumeric22 unique values
0 missing
unique_operandsnumeric47 unique values
0 missing
executable_locnumeric61 unique values
0 missing
code_and_comment_locnumeric4 unique values
0 missing
comment_locnumeric31 unique values
0 missing
blank_locnumeric57 unique values
0 missing

107 properties

107
Number of instances (rows) of the dataset.
30
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
29
Number of numeric attributes.
1
Number of nominal attributes.
0.7
Average class difference between consecutive instances.
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.18
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Entropy of the target attribute values.
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.18
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.38
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.28
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.17
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
81.31
Percentage of instances belonging to the most frequent class.
87
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
46.38
Maximum kurtosis among attributes of the numeric type.
15184.85
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
6.78
Maximum skewness among attributes of the numeric type.
39411.8
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
18.38
Mean kurtosis among attributes of the numeric type.
594.81
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
3.36
Mean skewness among attributes of the numeric type.
1490.81
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.14
Minimum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.45
Minimum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
18.69
Percentage of instances belonging to the least frequent class.
20
Number of instances belonging to the least frequent class.
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.47
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
3.33
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
96.67
Percentage of numeric attributes.
3.33
Percentage of nominal attributes.
First quartile of entropy among attributes.
4.17
First quartile of kurtosis among attributes of the numeric type.
0.71
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
1.76
First quartile of skewness among attributes of the numeric type.
1.53
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
17.25
Second quartile (Median) of kurtosis among attributes of the numeric type.
11.24
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
3.64
Second quartile (Median) of skewness among attributes of the numeric type.
15.62
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
26.35
Third quartile of kurtosis among attributes of the numeric type.
50.13
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.39
Third quartile of skewness among attributes of the numeric type.
62.56
Third quartile of standard deviation of attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.19
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.29
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.29
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.29
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.21
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.18
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

14 tasks

589 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: defects
205 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: defects
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: defects
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task