DEVELOPMENT... OpenML
Data
pc3

pc3

active ARFF Publicly available Visibility: public Uploaded 06-10-2014 by Felicia West
1 likes downloaded by 18 people , 18 total downloads 0 issues 0 downvotes
  • mythbusting_1 OpenML-CC18 OpenML100 PROMISE study_1 study_123 study_14 study_15 study_20 study_34 study_41 study_52 study_7 study_98 study_99 study_225 study_236 study_293 study_253 study_388 study_388 study_388 study_388
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Mike Chapman, NASA Source: [tera-PROMISE](http://openscience.us/repo/defect/mccabehalsted/pc3.html) - 2004 Please cite: Sayyad Shirabad, J. and Menzies, T.J. (2005) The PROMISE Repository of Software Engineering Databases. School of Information Technology and Engineering, University of Ottawa, Canada. PC3 Software defect prediction One of the NASA Metrics Data Program defect data sets. Data from flight software for earth orbiting satellite. Data comes from McCabe and Halstead features extractors of source code. These features were defined in the 70s in an attempt to objectively characterize code features that are associated with software quality. ### Relevant papers - Shepperd, M. and Qinbao Song and Zhongbin Sun and Mair, C. (2013) Data Quality: Some Comments on the NASA Software Defect Datasets, IEEE Transactions on Software Engineering, 39. - Tim Menzies and Justin S. Di Stefano (2004) How Good is Your Blind Spot Sampling Policy? 2004 IEEE Conference on High Assurance Software Engineering. - T. Menzies and J. DiStefano and A. Orrego and R. Chapman (2004) Assessing Predictors of Software Defects", Workshop on Predictive Software Models, Chicago

38 features

c (target)nominal2 unique values
0 missing
HALSTEAD_ERROR_ESTnumeric139 unique values
0 missing
HALSTEAD_EFFORTnumeric1329 unique values
0 missing
HALSTEAD_LENGTHnumeric357 unique values
0 missing
HALSTEAD_LEVELnumeric45 unique values
0 missing
HALSTEAD_PROG_TIMEnumeric1318 unique values
0 missing
HALSTEAD_VOLUMEnumeric1055 unique values
0 missing
MAINTENANCE_SEVERITYnumeric81 unique values
0 missing
MODIFIED_CONDITION_COUNTnumeric50 unique values
0 missing
MULTIPLE_CONDITION_COUNTnumeric68 unique values
0 missing
NODE_COUNTnumeric103 unique values
0 missing
NORMALIZED_CYLOMATIC_COMPLEXITYnumeric68 unique values
0 missing
NUM_OPERANDSnumeric227 unique values
0 missing
NUM_OPERATORSnumeric259 unique values
0 missing
NUM_UNIQUE_OPERANDSnumeric117 unique values
0 missing
NUM_UNIQUE_OPERATORSnumeric43 unique values
0 missing
NUMBER_OF_LINESnumeric170 unique values
0 missing
PERCENT_COMMENTSnumeric377 unique values
0 missing
LOC_TOTALnumeric123 unique values
0 missing
DESIGN_COMPLEXITYnumeric33 unique values
0 missing
BRANCH_COUNTnumeric72 unique values
0 missing
CALL_PAIRSnumeric20 unique values
0 missing
LOC_CODE_AND_COMMENTnumeric25 unique values
0 missing
LOC_COMMENTSnumeric58 unique values
0 missing
CONDITION_COUNTnumeric69 unique values
0 missing
CYCLOMATIC_COMPLEXITYnumeric52 unique values
0 missing
CYCLOMATIC_DENSITYnumeric77 unique values
0 missing
DECISION_COUNTnumeric45 unique values
0 missing
DECISION_DENSITYnumeric52 unique values
0 missing
LOC_BLANKnumeric54 unique values
0 missing
DESIGN_DENSITYnumeric78 unique values
0 missing
EDGE_COUNTnumeric126 unique values
0 missing
ESSENTIAL_COMPLEXITYnumeric25 unique values
0 missing
ESSENTIAL_DENSITYnumeric61 unique values
0 missing
LOC_EXECUTABLEnumeric118 unique values
0 missing
PARAMETER_COUNTnumeric8 unique values
0 missing
HALSTEAD_CONTENTnumeric1174 unique values
0 missing
HALSTEAD_DIFFICULTYnumeric822 unique values
0 missing

107 properties

1563
Number of instances (rows) of the dataset.
38
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
37
Number of numeric attributes.
1
Number of nominal attributes.
0.81
Average class difference between consecutive instances.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.1
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.48
Entropy of the target attribute values.
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.1
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.02
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.12
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
89.76
Percentage of instances belonging to the most frequent class.
1403
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
1039.34
Maximum kurtosis among attributes of the numeric type.
34072.82
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
30.49
Maximum skewness among attributes of the numeric type.
358165.94
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
238.95
Mean kurtosis among attributes of the numeric type.
1008.15
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
10.32
Mean skewness among attributes of the numeric type.
10334.5
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.48
Minimum kurtosis among attributes of the numeric type.
0.12
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.59
Minimum skewness among attributes of the numeric type.
0.13
Minimum standard deviation of attributes of the numeric type.
10.24
Percentage of instances belonging to the least frequent class.
160
Number of instances belonging to the least frequent class.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.48
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.63
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.37
Percentage of numeric attributes.
2.63
Percentage of nominal attributes.
First quartile of entropy among attributes.
9.98
First quartile of kurtosis among attributes of the numeric type.
1.44
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
2.63
First quartile of skewness among attributes of the numeric type.
2.06
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
144.27
Second quartile (Median) of kurtosis among attributes of the numeric type.
7.64
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
9.78
Second quartile (Median) of skewness among attributes of the numeric type.
15.93
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
407.27
Third quartile of kurtosis among attributes of the numeric type.
22.68
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
16.3
Third quartile of skewness among attributes of the numeric type.
43.86
Third quartile of standard deviation of attributes of the numeric type.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.11
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.11
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.11
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.11
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.16
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.17
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.16
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.17
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.16
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.17
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.64
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.12
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.26
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

27 tasks

143129 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: c
193 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: c
0 runs - estimation_procedure: 33% Holdout set - target_feature: c
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: c
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: c
86 runs - estimation_procedure: 10-fold Learning Curve - target_feature: c
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: c
0 runs - target_feature: c
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
1310 runs - target_feature: c
1308 runs - target_feature: c
0 runs - target_feature: c
0 runs - target_feature: c
0 runs - target_feature: c
0 runs - target_feature: c
0 runs - target_feature: c
0 runs - target_feature: c
Define a new task