DEVELOPMENT... OpenML
Data
hypothyroid

hypothyroid

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Felicia West
0 likes downloaded by 10 people , 13 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_144 study_15 study_20 study_41
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

30 features

binaryClass (target)nominal2 unique values
0 missing
psychnominal2 unique values
0 missing
referral sourcenominal5 unique values
0 missing
TBGnumeric0 unique values
3772 missing
TBG measurednominal1 unique values
0 missing
FTInumeric234 unique values
385 missing
FTI measurednominal2 unique values
0 missing
T4Unumeric146 unique values
387 missing
T4U measurednominal2 unique values
0 missing
TT4numeric241 unique values
231 missing
TT4 measurednominal2 unique values
0 missing
T3numeric69 unique values
769 missing
T3 measurednominal2 unique values
0 missing
TSHnumeric287 unique values
369 missing
TSH measurednominal2 unique values
0 missing
agenumeric93 unique values
1 missing
hypopituitarynominal2 unique values
0 missing
tumornominal2 unique values
0 missing
goitrenominal2 unique values
0 missing
lithiumnominal2 unique values
0 missing
query hyperthyroidnominal2 unique values
0 missing
query hypothyroidnominal2 unique values
0 missing
I131 treatmentnominal2 unique values
0 missing
thyroid surgerynominal2 unique values
0 missing
pregnantnominal2 unique values
0 missing
sicknominal2 unique values
0 missing
on antithyroid medicationnominal2 unique values
0 missing
query on thyroxinenominal2 unique values
0 missing
on thyroxinenominal2 unique values
0 missing
sexnominal2 unique values
150 missing

107 properties

3772
Number of instances (rows) of the dataset.
30
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
6064
Number of missing values in the dataset.
3772
Number of instances with at least one value missing.
7
Number of numeric attributes.
23
Number of nominal attributes.
0.86
Average class difference between consecutive instances.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.39
Entropy of the target attribute values.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.02
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Number of attributes divided by the number of instances.
234.83
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.96
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.96
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.96
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
92.29
Percentage of instances belonging to the most frequent class.
3481
Number of instances belonging to the most frequent class.
1.52
Maximum entropy among attributes.
238.18
Maximum kurtosis among attributes of the numeric type.
110.47
Maximum of means among attributes of the numeric type.
0.01
Maximum mutual information between the nominal attributes and the target attribute.
5
The maximum number of distinct values among attributes of the nominal type.
13.88
Maximum skewness among attributes of the numeric type.
35.6
Maximum standard deviation of attributes of the numeric type.
0.34
Average entropy of the attributes.
51.41
Mean kurtosis among attributes of the numeric type.
46.44
Mean of means among attributes of the numeric type.
0
Average mutual information between the nominal attributes and the target attribute.
201.19
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2.09
Average number of distinct values among the attributes of the nominal type.
3.57
Mean skewness among attributes of the numeric type.
19.05
Mean standard deviation of attributes of the numeric type.
-0
Minimal entropy among attributes.
4.07
Minimum kurtosis among attributes of the numeric type.
0.99
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
1
The minimal number of distinct values among attributes of the nominal type.
1.23
Minimum skewness among attributes of the numeric type.
0.2
Minimum standard deviation of attributes of the numeric type.
7.71
Percentage of instances belonging to the least frequent class.
291
Number of instances belonging to the least frequent class.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.05
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.55
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
21
Number of binary attributes.
70
Percentage of binary attributes.
100
Percentage of instances having missing values.
5.36
Percentage of missing values.
23.33
Percentage of numeric attributes.
76.67
Percentage of nominal attributes.
0.1
First quartile of entropy among attributes.
5.98
First quartile of kurtosis among attributes of the numeric type.
1.76
First quartile of means among attributes of the numeric type.
0
First quartile of mutual information between the nominal attributes and the target attribute.
1.26
First quartile of skewness among attributes of the numeric type.
0.67
First quartile of standard deviation of attributes of the numeric type.
0.26
Second quartile (Median) of entropy among attributes.
8.87
Second quartile (Median) of kurtosis among attributes of the numeric type.
28.41
Second quartile (Median) of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.54
Second quartile (Median) of skewness among attributes of the numeric type.
22.3
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.48
Third quartile of entropy among attributes.
90.94
Third quartile of kurtosis among attributes of the numeric type.
108.86
Third quartile of means among attributes of the numeric type.
0
Third quartile of mutual information between the nominal attributes and the target attribute.
4.94
Third quartile of skewness among attributes of the numeric type.
33.72
Third quartile of standard deviation of attributes of the numeric type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.01
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.01
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.01
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.02
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.67
Standard deviation of the number of distinct values among attributes of the nominal type.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.09
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

15 tasks

522 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
215 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task